亚洲v欧美v国产v在线成_制服丝袜中文字幕丝袜专区_一区二区三区韩国电影_激情欧美一区二区中文字幕

我要投稿 投訴建議

等差數(shù)列教學(xué)設(shè)計(jì)

時(shí)間:2024-07-17 14:20:22 教學(xué)設(shè)計(jì) 我要投稿

等差數(shù)列教學(xué)設(shè)計(jì)

  作為一名優(yōu)秀的教育工作者,就不得不需要編寫教學(xué)設(shè)計(jì),借助教學(xué)設(shè)計(jì)可以更大幅度地提高學(xué)生各方面的能力,從而使學(xué)生獲得良好的發(fā)展。那么你有了解過(guò)教學(xué)設(shè)計(jì)嗎?以下是小編精心整理的等差數(shù)列教學(xué)設(shè)計(jì),希望能夠幫助到大家。

等差數(shù)列教學(xué)設(shè)計(jì)

等差數(shù)列教學(xué)設(shè)計(jì)1

  一、教學(xué)目標(biāo):

  1、知識(shí)與技能

  (1)初步掌握一些特殊數(shù)列求其前n項(xiàng)和的常用方法.

  (2)通過(guò)把某些既非等差數(shù)列,又非等比數(shù)列的數(shù)列化歸成等差數(shù)列或等比數(shù)列求和問(wèn)題,培養(yǎng)學(xué)生觀察、分析問(wèn)題的能力,轉(zhuǎn)化的數(shù)學(xué)思想以及數(shù)學(xué)運(yùn)算能力。

  2、 過(guò)程與方法

  培養(yǎng)學(xué)生分析解決問(wèn)題的能力,歸納總結(jié)能力,以及數(shù)學(xué)運(yùn)算的能力。

  3、 情感,態(tài)度,價(jià)值觀

  通過(guò)教學(xué),讓學(xué)生認(rèn)識(shí)到事物是普遍聯(lián)系,發(fā)展變化的。

  二、教學(xué)重點(diǎn):

  把某些既非等差數(shù)列,又非等比數(shù)列的數(shù)列化歸成等差數(shù)列或等比數(shù)列求和

  三、教學(xué)難點(diǎn)

  尋找適當(dāng)?shù)淖儞Q方法,達(dá)到化歸的目的

  四、教學(xué)過(guò)程設(shè)計(jì)

  復(fù)習(xí)引入:

  (1)1+2+3+……+100=

  (2) 1+3+5+……+2n-1=

  (3) 1+2+4+……+2《數(shù)列求和》教學(xué)設(shè)計(jì)及反思=

  (4) 《數(shù)列求和》教學(xué)設(shè)計(jì)及反思=

  設(shè)計(jì)意圖:

  讓學(xué)生回顧舊知,由此導(dǎo)入新課。

  [教師過(guò)渡]:今天我們學(xué)習(xí)《數(shù)列求和》第二課時(shí),課標(biāo)要求和學(xué)習(xí)內(nèi)容如下:(多媒體課件展示)

  導(dǎo)入新課:

  [情境創(chuàng)設(shè)] (課件展示):

  例1:求數(shù)列《數(shù)列求和》教學(xué)設(shè)計(jì)及反思,…的前《數(shù)列求和》教學(xué)設(shè)計(jì)及反思項(xiàng)和

  分析:將各項(xiàng)分母通分,顯然是行不通的,啟發(fā)學(xué)生能否通過(guò)通項(xiàng)的特點(diǎn),將每一項(xiàng)拆成兩項(xiàng)的差,使它們之間能互相抵消很多項(xiàng)。

  [問(wèn)題生成]:請(qǐng)同學(xué)們觀察否是等差數(shù)列或等比數(shù)列?

  設(shè)問(wèn):既然不是等差數(shù)列,也不是等比數(shù)列,那么就不能直接用等差,等比數(shù)列的求和公式,請(qǐng)同學(xué)們仔細(xì)觀察一下此數(shù)列有何特征

  [教師過(guò)渡]:對(duì)于通項(xiàng)形如《數(shù)列求和》教學(xué)設(shè)計(jì)及反思(其中數(shù)列《數(shù)列求和》教學(xué)設(shè)計(jì)及反思為等差數(shù)列)求和時(shí),我們采取裂項(xiàng)相消求和方法

  [特別警示] 利用裂項(xiàng)相消求和方法時(shí),抵消后并不一定只剩下第一項(xiàng)和最后一項(xiàng),也有可能前面剩兩項(xiàng),后面也剩兩項(xiàng),再就是將通項(xiàng)公式裂項(xiàng)后,有時(shí)候需要調(diào)整前面的系數(shù),才能使裂開的兩項(xiàng)差與原通項(xiàng)公式相等.

  變式訓(xùn)練:

  1、已知數(shù)列{ 《數(shù)列求和》教學(xué)設(shè)計(jì)及反思 }的前n項(xiàng)和為《數(shù)列求和》教學(xué)設(shè)計(jì)及反思,若《數(shù)列求和》教學(xué)設(shè)計(jì)及反思,設(shè)《數(shù)列求和》教學(xué)設(shè)計(jì)及反思,求數(shù)列{ 《數(shù)列求和》教學(xué)設(shè)計(jì)及反思 }前10和《數(shù)列求和》教學(xué)設(shè)計(jì)及反思

  說(shuō)明:例題引伸是教學(xué)中常做的一件事,它可以使學(xué)生的認(rèn)識(shí)得到“升華”,

  發(fā)展學(xué)生的思維,并起到觸類旁通,舉一反三的效果

  【小結(jié)】裂項(xiàng)的目的是為使部分項(xiàng)相互抵消.大多數(shù)裂項(xiàng)相消的通項(xiàng)均可表示為bn=《數(shù)列求和》教學(xué)設(shè)計(jì)及反思,其中{《數(shù)列求和》教學(xué)設(shè)計(jì)及反思 }是公差d不為0的等差數(shù)列,則《數(shù)列求和》教學(xué)設(shè)計(jì)及反思《數(shù)列求和》教學(xué)設(shè)計(jì)及反思)

  例2:求和:《數(shù)列求和》教學(xué)設(shè)計(jì)及反思

  分析:直接算肯定不可行,啟發(fā)學(xué)生能否通過(guò)通項(xiàng)的特點(diǎn)進(jìn)行求解。

  [問(wèn)題生成]:

  根據(jù)以上例題,觀察該例題通項(xiàng)公式的特點(diǎn)。

  [教師過(guò)渡]:如果{《數(shù)列求和》教學(xué)設(shè)計(jì)及反思}是等差數(shù)列,《數(shù)列求和》教學(xué)設(shè)計(jì)及反思是等比數(shù)列,那么求數(shù)列《數(shù)列求和》教學(xué)設(shè)計(jì)及反思 的前n項(xiàng)和,可用錯(cuò)位相減法.

  《數(shù)列求和》教學(xué)設(shè)計(jì)及反思

  變式訓(xùn)練2、

  拓展練習(xí):1、已知函數(shù)y=3x2-2x,數(shù)列{《數(shù)列求和》教學(xué)設(shè)計(jì)及反思 }的前n項(xiàng)和 為sn ,點(diǎn)(n, sn)均在函數(shù)y=f(x)的圖象上。

  (1)、求數(shù)列{an}的通項(xiàng)公式;

  (2)、設(shè)是數(shù)列{bn=《數(shù)列求和》教學(xué)設(shè)計(jì)及反思 }的前n和《數(shù)列求和》教學(xué)設(shè)計(jì)及反思,求使得Tn〈《數(shù)列求和》教學(xué)設(shè)計(jì)及反思對(duì)所有都成立的`最小正整數(shù)m。

  五、方法總結(jié):

  公式求和:對(duì)于等差數(shù)列和等比數(shù)列的前n項(xiàng)和可直接用求和公式.

  拆項(xiàng)重組:利用轉(zhuǎn)化的思想,將數(shù)列拆分、重組轉(zhuǎn)化為等差或等比數(shù)列求和.

  裂項(xiàng)相消:對(duì)于通項(xiàng)型如《數(shù)列求和》教學(xué)設(shè)計(jì)及反思(其中數(shù)列《數(shù)列求和》教學(xué)設(shè)計(jì)及反思為等差數(shù)列) 的數(shù)列,在求和時(shí)將每項(xiàng)分裂成兩項(xiàng)之差的形式,一般除首末兩項(xiàng)或附近幾項(xiàng)外,其余各項(xiàng)先后抵消,可較易求出前n項(xiàng)和。

  錯(cuò)位相減:若一個(gè)數(shù)列具備有如下特征:它的各項(xiàng)恰好是由某個(gè)等差數(shù)列與某個(gè)等比數(shù)列之對(duì)應(yīng)項(xiàng)相乘所構(gòu)成的,其求和則用錯(cuò)位相減法 (此法即為等比數(shù)列求和公式的推導(dǎo)方法)。

  六、作業(yè)布置:

  課本P49:第8題

  七、教學(xué)反思

  1.我從兩個(gè)方面設(shè)計(jì)變式題。其一,橫向變化,其二是縱向變化。橫向變化是:從公式→例題各個(gè)側(cè)面來(lái)看求和,讓學(xué)生開拓了視野,展開豐富的聯(lián)想:分組求和可分兩組,是否還有分三組來(lái)解的題?裂項(xiàng)相消法求和有分母裂項(xiàng)求和,是否還有分母有理化進(jìn)行求和等?v向變化:條件削弱,問(wèn)題復(fù)雜,難度提升。從具體到抽象,從特殊到一般螺旋式的上升。橫向變化,可看出思維變異的多樣性。這種思維變異的多樣性在今后的學(xué)習(xí)過(guò)程中將要面臨的。如何理解這種數(shù)學(xué)的合理性呢?學(xué)生的學(xué)習(xí)的本質(zhì)是繼承、借鑒、發(fā)展、創(chuàng)新,而問(wèn)題變式教學(xué)恰是在有實(shí)例的支持下,繼承了思維變異的常用技巧,借鑒此技巧、尋求更多的變異,如分組成三個(gè)或更多個(gè)的式子求和,使學(xué)的思維得到充分的發(fā)展,從而取得創(chuàng)新的目的,這就是教學(xué)中所要取得的效果。從縱向變化,可看出思維變異的深入性。問(wèn)題的層層深入,使問(wèn)題的一般規(guī)律掀起蓋頭,讓學(xué)生體驗(yàn)了思維向縱深發(fā)展的規(guī)律。

  2.反思求和公式方法的總結(jié),我也發(fā)現(xiàn)了種種遺憾.如學(xué)生的解法均缺乏根據(jù),但教師贊賞學(xué)生這種善于通過(guò)類比聯(lián)想而發(fā)現(xiàn)的創(chuàng)造性解法,為了保護(hù)學(xué)生的積極性和創(chuàng)造性,沒(méi)有進(jìn)行否定,而是讓學(xué)生課下思考,是否妥當(dāng)?需要研究.又如裂項(xiàng)相消法等,都是由教師提出來(lái)的,若是能由學(xué)生主動(dòng)提出就更好了.為此急需加強(qiáng)對(duì)學(xué)生提出問(wèn)題的能力的訓(xùn)練和培養(yǎng),

  3.利用課堂教學(xué)的機(jī)會(huì),有意識(shí)地將數(shù)學(xué)研究的某些思想方法滲透到教學(xué)過(guò)程中,課堂教學(xué)不能單純傳授知識(shí),應(yīng)在傳授知識(shí)的同時(shí)注重能力的培養(yǎng)、在上述思想的指導(dǎo)下,這堂課的教學(xué)過(guò)程中,每個(gè)例題都讓學(xué)生體會(huì)到通項(xiàng)化歸的思想方法。

  4.提高課堂教學(xué)的實(shí)效,加快學(xué)生的思維節(jié)秦,不拖泥帶水,該說(shuō)的話,要說(shuō)到點(diǎn)上,要說(shuō)透,能少說(shuō)的,就決不多說(shuō),盡量擠出時(shí)間讓學(xué)生多練。在例題講解中,以學(xué)生為主,先由學(xué)生自行解題,展開討論及合作學(xué)習(xí),充分調(diào)動(dòng)了學(xué)生學(xué)習(xí)數(shù)學(xué)的熱情,提高創(chuàng)新思維的能力。

等差數(shù)列教學(xué)設(shè)計(jì)2

  本節(jié)課是《普通高中課程標(biāo)準(zhǔn)實(shí)驗(yàn)教科書·數(shù)學(xué)5》(北師大版)第一章數(shù)列第二節(jié)等差數(shù)列第一課時(shí).?dāng)?shù)列是高中數(shù)學(xué)重要內(nèi)容之一,它不僅有著廣泛的實(shí)際應(yīng)用,而且起著承前啟后的作用.等差數(shù)列是在學(xué)生學(xué)習(xí)了數(shù)列的有關(guān)概念和給出數(shù)列的兩種方法——通項(xiàng)公式和遞推公式的基礎(chǔ)上,對(duì)數(shù)列的知識(shí)進(jìn)一步深入和拓廣.同時(shí)等差數(shù)列也為今后學(xué)習(xí)等比數(shù)列提供了“聯(lián)想”、“類比”的思想方法.

  【教學(xué)目標(biāo)】

  1. 知識(shí)與技能

 。1)理解等差數(shù)列的定義,會(huì)應(yīng)用定義判斷一個(gè)數(shù)列是否是等差數(shù)列:

 。2)賬務(wù)等差數(shù)列的通項(xiàng)公式及其推導(dǎo)過(guò)程:

 。3)會(huì)應(yīng)用等差數(shù)列通項(xiàng)公式解決簡(jiǎn)單問(wèn)題。

  2.過(guò)程與方法

  在定義的理解和通項(xiàng)公式的推導(dǎo)、應(yīng)用過(guò)程中,培養(yǎng)學(xué)生的觀察、分析、歸納能力和嚴(yán)密的邏輯思維的能力,體驗(yàn)從特殊到一般,一般到特殊的認(rèn)知規(guī)律,提高熟悉猜想和歸納的能力,滲透函數(shù)與方程的思想。

  3.情感、態(tài)度與價(jià)值觀

  通過(guò)教師指導(dǎo)下學(xué)生的自主學(xué)習(xí)、相互交流和探索活動(dòng),培養(yǎng)學(xué)生主動(dòng)探索、用于發(fā)現(xiàn)的求知精神,激發(fā)學(xué)生的學(xué)習(xí)興趣,讓學(xué)生感受到成功的喜悅。在解決問(wèn)題的過(guò)程中,使學(xué)生養(yǎng)成細(xì)心觀察、認(rèn)真分析、善于總結(jié)的良好習(xí)慣。

  【教學(xué)重點(diǎn)】

  ①等差數(shù)列的概念;②等差數(shù)列的通項(xiàng)公式

  【教學(xué)難點(diǎn)】

  ①理解等差數(shù)列“等差”的特點(diǎn)及通項(xiàng)公式的含義;②等差數(shù)列的通項(xiàng)公式的推導(dǎo)過(guò)程.

  【學(xué)情分析】

  我所教學(xué)的學(xué)生是我校高一(7)班的學(xué)生(平行班學(xué)生),經(jīng)過(guò)一年的高中數(shù)學(xué)學(xué)習(xí),大部分學(xué)生知識(shí)經(jīng)驗(yàn)已較為豐富,他們的智力發(fā)展已到了形式運(yùn)演階段,具備了較強(qiáng)的抽象思維能力和演繹推理能力,但也有一部分學(xué)生的基礎(chǔ)較弱,學(xué)習(xí)數(shù)學(xué)的興趣還不是很濃,所以我在授課時(shí)注重從具體的生活實(shí)例出發(fā),注重引導(dǎo)、啟發(fā)、研究和探討以符合這類學(xué)生的心理發(fā)展特點(diǎn),從而促進(jìn)思維能力的進(jìn)一步發(fā)展.

  【設(shè)計(jì)思路】

  1.教法

 、賳l(fā)引導(dǎo)法:這種方法有利于學(xué)生對(duì)知識(shí)進(jìn)行主動(dòng)建構(gòu);有利于突出重點(diǎn),突破難點(diǎn);有利于調(diào)動(dòng)學(xué)生的主動(dòng)性和積極性,發(fā)揮其創(chuàng)造性.

 、诜纸M討論法:有利于學(xué)生進(jìn)行交流,及時(shí)發(fā)現(xiàn)問(wèn)題,解決問(wèn)題,調(diào)動(dòng)學(xué)生的積極性.

  ③講練結(jié)合法:可以及時(shí)鞏固所學(xué)內(nèi)容,抓住重點(diǎn),突破難點(diǎn).

  2.學(xué)法

  引導(dǎo)學(xué)生首先從三個(gè)現(xiàn)實(shí)問(wèn)題(數(shù)數(shù)問(wèn)題、水庫(kù)水位問(wèn)題、儲(chǔ)蓄問(wèn)題)概括出數(shù)組特點(diǎn)并抽象出等差數(shù)列的概念;接著就等差數(shù)列概念的特點(diǎn),推導(dǎo)出等差數(shù)列的通項(xiàng)公式;可以對(duì)各種能力的同學(xué)引導(dǎo)認(rèn)識(shí)多元的推導(dǎo)思維方法.

  【教學(xué)過(guò)程】

  一:創(chuàng)設(shè)情境,引入新課

  1.從0開始,將5的倍數(shù)按從小到大的順序排列,得到的`數(shù)列是什么?

  2.水庫(kù)管理人員為了保證優(yōu)質(zhì)魚類有良好的生活環(huán)境,用定期放水清庫(kù)的辦法清理水庫(kù)中的雜魚.如果一個(gè)水庫(kù)的水位為18,自然放水每天水位降低2.5,最低降至5.那么從開始放水算起,到可以進(jìn)行清理工作的那天,水庫(kù)每天的水位(單位:)組成一個(gè)什么數(shù)列?

  3.我國(guó)現(xiàn)行儲(chǔ)蓄制度規(guī)定銀行支付存款利息的方式為單利,即不把利息加入本息計(jì)算下一期的利息.按照單利計(jì)算本利和的公式是:本利和=本金×(1+利率×存期).按活期存入10 000元錢,年利率是0.72%,那么按照單利,5年內(nèi)各年末的本利和(單位:元)組成一個(gè)什么數(shù)列?

  教師:以上三個(gè)問(wèn)題中的數(shù)蘊(yùn)涵著三列數(shù).

  學(xué)生:

  1:0,5,10,15,20,25,….

  2:18,15.5,13,10.5,8,5.5.

  3:10072,10144,10216,10288,10360.

  (設(shè)置意圖:從實(shí)例引入,實(shí)質(zhì)是給出了等差數(shù)列的現(xiàn)實(shí)背景,目的是讓學(xué)生感受到等差數(shù)列是現(xiàn)實(shí)生活中大量存在的數(shù)學(xué)模型.通過(guò)分析,由特殊到一般,激發(fā)學(xué)生學(xué)習(xí)探究知識(shí)的自主性,培養(yǎng)學(xué)生的歸納能力.

  二:觀察歸納,形成定義

 、0,5,10,15,20,25,….

 、18,15.5,13,10.5,8,5.5.

 、10072,10144,10216,10288,10360.

  思考1上述數(shù)列有什么共同特點(diǎn)?

  思考2根據(jù)上數(shù)列的共同特點(diǎn),你能給出等差數(shù)列的一般定義嗎?

  思考3你能將上述的文字語(yǔ)言轉(zhuǎn)換成數(shù)學(xué)符號(hào)語(yǔ)言嗎?

  教師:引導(dǎo)學(xué)生思考這三列數(shù)具有的共同特征,然后讓學(xué)生抓住數(shù)列的特征,歸納得出等差數(shù)列概念.

  學(xué)生:分組討論,可能會(huì)有不同的答案:前數(shù)和后數(shù)的差符合一定規(guī)律;這些數(shù)都是按照一定順序排列的…只要合理教師就要給予肯定.

  教師引導(dǎo)歸納出:等差數(shù)列的定義;另外,教師引導(dǎo)學(xué)生從數(shù)學(xué)符號(hào)角度理解等差數(shù)列的定義.

  (設(shè)計(jì)意圖:通過(guò)對(duì)一定數(shù)量感性材料的觀察、分析,提煉出感性材料的本質(zhì)屬性;使學(xué)生體會(huì)到等差數(shù)列的規(guī)律和共同特點(diǎn);一開始抓住:“從第二項(xiàng)起,每一項(xiàng)與它的前一項(xiàng)的差為同一常數(shù)”,落實(shí)對(duì)等差數(shù)列概念的準(zhǔn)確表達(dá).)

  三:舉一反三,鞏固定義

  1.判定下列數(shù)列是否為等差數(shù)列?若是,指出公差d.

  (1)1,1,1,1,1;

  (2)1,0,1,0,1;

  (3)2,1,0,-1,-2;

  (4)4,7,10,13,16.

  教師出示題目,學(xué)生思考回答.教師訂正并強(qiáng)調(diào)求公差應(yīng)注意的問(wèn)題.

  注意:公差d是每一項(xiàng)(第2項(xiàng)起)與它的前一項(xiàng)的差,防止把被減數(shù)與減數(shù)弄顛倒,而且公差可以是正數(shù),負(fù)數(shù),也可以為0 .

 。ㄔO(shè)計(jì)意圖:強(qiáng)化學(xué)生對(duì)等差數(shù)列“等差”特征的理解和應(yīng)用).

  2思考4:設(shè)數(shù)列{an}的通項(xiàng)公式為an=3n+1,該數(shù)列是等差數(shù)列嗎?為什么?

 。ㄔO(shè)計(jì)意圖:強(qiáng)化等差數(shù)列的證明定義法)

  四:利用定義,導(dǎo)出通項(xiàng)

  1.已知等差數(shù)列:8,5,2,…,求第200項(xiàng)?

  2.已知一個(gè)等差數(shù)列{an}的首項(xiàng)是a1,公差是d,如何求出它的任意項(xiàng)an呢?

  教師出示問(wèn)題,放手讓學(xué)生探究,然后選擇列式具有代表性的上去板演或投影展示.根據(jù)學(xué)生在課堂上的具體情況進(jìn)行具體評(píng)價(jià)、引導(dǎo),總結(jié)推導(dǎo)方法,體會(huì)歸納思想以及累加求通項(xiàng)的方法;讓學(xué)生初步嘗試處理數(shù)列問(wèn)題的常用方法.

 。ㄔO(shè)計(jì)意圖:引導(dǎo)學(xué)生觀察、歸納、猜想,培養(yǎng)學(xué)生合理的推理能力.學(xué)生在分組合作探究過(guò)程中,可能會(huì)找到多種不同的解決辦法,教師要逐一點(diǎn)評(píng),并及時(shí)肯定、贊揚(yáng)學(xué)生善于動(dòng)腦、勇于創(chuàng)新的品質(zhì),激發(fā)學(xué)生的創(chuàng)造意識(shí).鼓勵(lì)學(xué)生自主解答,培養(yǎng)學(xué)生運(yùn)算能力)

  五:應(yīng)用通項(xiàng),解決問(wèn)題

  1判斷100是不是等差數(shù)列2, 9,16,…的項(xiàng)?如果是,是第幾項(xiàng)?

  2在等差數(shù)列{an}中,已知a5=10,a12=31,求a1,d和an.

  3求等差數(shù)列 3,7,11,…的第4項(xiàng)和第10項(xiàng)

  教師:給出問(wèn)題,讓學(xué)生自己操練,教師巡視學(xué)生答題情況.

  學(xué)生:教師叫學(xué)生代表總結(jié)此類題型的解題思路,教師補(bǔ)充:已知等差數(shù)列的首項(xiàng)和公差就可以求出其通項(xiàng)公式

 。ㄔO(shè)計(jì)意圖:主要是熟悉公式,使學(xué)生從中體會(huì)公式與方程之間的聯(lián)系.初步認(rèn)識(shí)“基本量法”求解等差數(shù)列問(wèn)題.)

  六:反饋練習(xí):教材13頁(yè)練習(xí)1

  七:歸納總結(jié):

  1.一個(gè)定義:

  等差數(shù)列的定義及定義表達(dá)式

  2.一個(gè)公式:

  等差數(shù)列的通項(xiàng)公式

  3.二個(gè)應(yīng)用:

  定義和通項(xiàng)公式的應(yīng)用

  教師:讓學(xué)生思考整理,找?guī)讉(gè)代表發(fā)言,最后教師給出補(bǔ)充

 。ㄔO(shè)計(jì)意圖:引導(dǎo)學(xué)生去聯(lián)想本節(jié)課所涉及到的各個(gè)方面,溝通它們之間的聯(lián)系,使學(xué)生能在新的高度上去重新認(rèn)識(shí)和掌握基本概念,并靈活運(yùn)用基本概念.)

  【設(shè)計(jì)反思】

  本設(shè)計(jì)從生活中的數(shù)列模型導(dǎo)入,有助于發(fā)揮學(xué)生學(xué)習(xí)的主動(dòng)性,增強(qiáng)學(xué)生學(xué)習(xí)數(shù)列的興趣.在探索的過(guò)程中,學(xué)生通過(guò)分析、觀察,歸納出等差數(shù)列定義,然后由定義導(dǎo)出通項(xiàng)公式,強(qiáng)化了由具體到抽象,由特殊到一般的思維過(guò)程,有助于提高學(xué)生分析問(wèn)題和解決問(wèn)題的能力.本節(jié)課教學(xué)采用啟發(fā)方法,以教師提出問(wèn)題、學(xué)生探討解決問(wèn)題為途徑,以相互補(bǔ)充展開教學(xué),總結(jié)科學(xué)合理的知識(shí)體系,形成師生之間的良性互動(dòng),提高課堂教學(xué)效率.

等差數(shù)列教學(xué)設(shè)計(jì)3

  一、教材分析

  1、目標(biāo):

  A、理解并掌握等差數(shù)列的概念;了解等差數(shù)列的通項(xiàng)公式的推導(dǎo)過(guò)程及思想;

  B、培養(yǎng)學(xué)生觀察、分析、歸納、推理的能力;在領(lǐng)會(huì)函數(shù)與數(shù)列關(guān)系的前提下,把研究函數(shù)的方法遷移來(lái)研究數(shù)列,培養(yǎng)學(xué)生的知識(shí)、方法遷移能力;通過(guò)階梯性練習(xí),提高學(xué)生分析問(wèn)題和解決問(wèn)題的能力。

  C、通過(guò)對(duì)等差數(shù)列的研究,培養(yǎng)學(xué)生主動(dòng)探索、勇于發(fā)現(xiàn)的求知精神;養(yǎng)成細(xì)心觀察、認(rèn)真分析、善于總結(jié)的良好思維習(xí)慣。

  2、教學(xué)重點(diǎn)和難點(diǎn)

 、俚炔顢(shù)列的概念。

 、诘炔顢(shù)列的通項(xiàng)公式的。推導(dǎo)過(guò)程及應(yīng)用。用不完全歸納法推導(dǎo)等差數(shù)列的通項(xiàng)公式。

  二、教法分析

  采用啟發(fā)式、討論式以及講練結(jié)合的教學(xué)方法,通過(guò)問(wèn)題激發(fā)學(xué)生求知欲,使學(xué)生主動(dòng)參與數(shù)學(xué)實(shí)踐活動(dòng),以獨(dú)立思考和相互交流的形式,在的指導(dǎo)下發(fā)現(xiàn)、分析和解決問(wèn)題。

  三、教學(xué)程序

  本節(jié)課的教學(xué)過(guò)程由

 。ㄒ唬⿵(fù)習(xí)引入

 。ǘ┬抡n探究

  (三)應(yīng)用例解

 。ㄋ模┓答伨毩(xí)

  (五)歸納小結(jié)

 。┎贾米鳂I(yè),六個(gè)教學(xué)環(huán)節(jié)構(gòu)成。

 。ㄒ唬⿵(fù)習(xí)引入:

  1、全國(guó)統(tǒng)一鞋號(hào)中成年女鞋的各種尺碼(表示鞋底長(zhǎng),單位是c)分別是21,22,23,24,25。

  2、某劇場(chǎng)前10排的座位數(shù)分別是:38,40,42,44,46,48,50,52,54,56。

  3、某長(zhǎng)跑運(yùn)動(dòng)員7天里每天的訓(xùn)練量(單位:)是:7500,8000,8500,9000,9500,10000,10500。

  共同特點(diǎn):

  從第2項(xiàng)起,每一項(xiàng)與前一項(xiàng)的差都等于同一個(gè)常數(shù)。

 。ǘ┬抡n探究

  1、給出等差數(shù)列的概念:

  如果一個(gè)數(shù)列,從第二項(xiàng)開始它的每一項(xiàng)與前一項(xiàng)之差都等于同一常數(shù),這個(gè)數(shù)列就叫等差數(shù)列,這個(gè)常數(shù)叫做等差數(shù)列的公差,通常用字母d來(lái)表示。強(qiáng)調(diào):

 、 “從第二項(xiàng)起”滿足條件;

 、诠頳一定是由后項(xiàng)減前項(xiàng)所得;

 、酃羁梢允钦龜(shù)、負(fù)數(shù),也可以是0。

  2、推導(dǎo)等差數(shù)列的通項(xiàng)公式

  若等差數(shù)列{an }的首項(xiàng)是,公差是d,則據(jù)其定義可得:

  — =d即:= +d

  – =d即:= +d = +2d

  – =d即:= +d = +3d

  進(jìn)而歸納出等差數(shù)列的通項(xiàng)公式:

  = +(n—1)d

  此時(shí)指出:

  這種求通項(xiàng)公式的辦法叫不完全歸納法,這種導(dǎo)出公式的方法不夠嚴(yán)密,為了培養(yǎng)學(xué)生嚴(yán)謹(jǐn)?shù)膶W(xué)習(xí)態(tài)度,在這里向?qū)W生介紹另外一種求數(shù)列通項(xiàng)公式的辦法——————迭加法:

  – =d

  – =d

  – =d

  – =d

  將這(n—1)個(gè)等式左右兩邊分別相加,就可以得到– = (n—1) d即= +(n—1) d

  當(dāng)n=1時(shí),上面等式兩邊均為,即等式也是成立的,這表明當(dāng)n∈時(shí)上面公式都成立,因此它就是等差數(shù)列{an }的通項(xiàng)公式。

  接著舉例說(shuō)明:若一個(gè)等差數(shù)列{}的首項(xiàng)是1,公差是2,得出這個(gè)數(shù)列的通項(xiàng)公式是:=1+(n—1)×2,即=2n—1以此來(lái)鞏固等差數(shù)列通項(xiàng)公式運(yùn)用

 。ㄈ⿷(yīng)用舉例

  這一環(huán)節(jié)是使學(xué)生通過(guò)例題和練習(xí),增強(qiáng)對(duì)通項(xiàng)公式含義的`理解以及對(duì)通項(xiàng)公式的運(yùn)用,提高解決實(shí)際問(wèn)題的能力。通過(guò)例1和例2向?qū)W生表明:要用運(yùn)動(dòng)變化的觀點(diǎn)看等差數(shù)列通項(xiàng)公式中的、d、n、這4個(gè)量之間的關(guān)系。當(dāng)其中的部分量已知時(shí),可根據(jù)該公式求出另一部分量。

  例1(1)求等差數(shù)列8,5,2,…的第20項(xiàng);

 。2)—401是不是等差數(shù)列—5,—9,—13,…的項(xiàng)?如果是,是第幾項(xiàng)?

  第二問(wèn)實(shí)際上是求正整數(shù)解的問(wèn)題,而關(guān)鍵是求出數(shù)列的通項(xiàng)公式

  例2在等差數(shù)列{an}中,已知=10,=31,求首項(xiàng)與公差d。

  在前面例1的基礎(chǔ)上將例2當(dāng)作練習(xí)作為對(duì)通項(xiàng)公式的鞏固

  例3梯子的最高一級(jí)寬33c,最低一級(jí)寬110c,中間還有10級(jí),各級(jí)的寬度成等差數(shù)列。計(jì)算中間各級(jí)的寬度。

 。ㄋ模┓答伨毩(xí)

  1、小節(jié)后的練習(xí)中的第1題和第2題(要求學(xué)生在規(guī)定時(shí)間內(nèi)完成)。目的:使學(xué)生熟悉通項(xiàng)公式,對(duì)學(xué)生進(jìn)行基本技能訓(xùn)練。

  2、若數(shù)列{ }是等差數(shù)列,若=,(為常數(shù))試證明:數(shù)列{ }是等差數(shù)列

  此題是對(duì)學(xué)生進(jìn)行數(shù)列問(wèn)題提高訓(xùn)練,學(xué)習(xí)如何用定義證明數(shù)列問(wèn)題同時(shí)強(qiáng)化了等差數(shù)列的概念。

 。ㄎ澹w納小結(jié)(由學(xué)生總結(jié)這節(jié)課的收獲)

  1、等差數(shù)列的概念及數(shù)學(xué)表達(dá)式、

  強(qiáng)調(diào)關(guān)鍵字:從第二項(xiàng)開始它的每一項(xiàng)與前一項(xiàng)之差都等于同一常數(shù)

  2、等差數(shù)列的通項(xiàng)公式= +(n—1) d會(huì)知三求一

  (六)布置作業(yè)

  必做題:課本P114習(xí)題3。2第2,6題

  選做題:已知等差數(shù)列{ }的首項(xiàng)= —24,從第10項(xiàng)開始為正數(shù),求公差d的取值范圍。(目的:通過(guò)分層作業(yè),提高同學(xué)們的求知欲和滿足不同層次的學(xué)生需求)

  四、板書設(shè)計(jì)

  在板書中突出本節(jié)重點(diǎn),將強(qiáng)調(diào)的地方如定義中,“從第二項(xiàng)起”及“同一常數(shù)”等幾個(gè)字用紅色粉筆標(biāo)注,同時(shí)給學(xué)生留有作題的地方,整個(gè)板書充分體現(xiàn)了精講多練的教學(xué)方法。

等差數(shù)列教學(xué)設(shè)計(jì)4

  教學(xué)目標(biāo):

 。1)理解等差數(shù)列的概念,掌握等差數(shù)列的通項(xiàng)公式;

 。2)利用等差數(shù)列的通項(xiàng)公式能由a1,d,n,an“知三求一”,了解等差數(shù)列的通項(xiàng)公式的推導(dǎo)過(guò)程及思想;

 。3)通過(guò)作等差數(shù)列的圖像,進(jìn)一步滲透數(shù)形結(jié)合思想、函數(shù)思想;通過(guò)等差數(shù)列的通項(xiàng)公式應(yīng)用,滲透方程思想。

  教學(xué)重、難點(diǎn):等差數(shù)列的定義及等差數(shù)列的通項(xiàng)公式。

  知識(shí)結(jié)構(gòu):一般數(shù)列定義通項(xiàng)公式法

  遞推公式法

  等差數(shù)列表示法應(yīng)用

  圖示法

  性質(zhì)列舉法

  教學(xué)過(guò)程:

 。ㄒ唬﹦(chuàng)設(shè)情境:

  1、觀察下列數(shù)列:

  1,2,3,4,……;(軍訓(xùn)時(shí)某排同學(xué)報(bào)數(shù))①

  10000,9000,8000,7000,……;(溫州市房?jī)r(jià)平均每月每平方下跌的價(jià)位)②

  2,2,2,2,……;(坐38路公交車的車費(fèi))③

  問(wèn)題:上述三個(gè)數(shù)列有什么共同特點(diǎn)?(學(xué)生會(huì)發(fā)現(xiàn)很多規(guī)律,如都是整數(shù),再舉幾個(gè)非整數(shù)等差數(shù)列例子讓學(xué)生觀察)

  規(guī)律:從第2項(xiàng)起,每一項(xiàng)與前一項(xiàng)的差都等于同一常數(shù)。

  引出等差數(shù)列。

 。ǘ┬抡n講解:

  1、等差數(shù)列定義:

  一般地,如果一個(gè)數(shù)列從第項(xiàng)起,每一項(xiàng)與它的前一項(xiàng)的差等于同一個(gè)常數(shù),那么這個(gè)數(shù)列就叫等差數(shù)列,這個(gè)常數(shù)叫做等差數(shù)列的公差,公差通常用字母表示。

  問(wèn)題:

 。╝)能否用數(shù)學(xué)符號(hào)語(yǔ)言描述等差數(shù)列的定義?

  用遞推公式表示為或、

 。╞)例1:觀察下列數(shù)列是否是等差數(shù)列:

 。1)1,—1,1,—1,…

  (2)1,2,4,6,8,10,…

  意在強(qiáng)調(diào)定義中“同一個(gè)常數(shù)”

 。╟)例2:求上述三個(gè)數(shù)列的公差;公差d可取哪些值?d>0,d=0,d

  說(shuō)明:等差數(shù)列(通常可稱為數(shù)列)的單調(diào)性:為遞增數(shù)列,為常數(shù)列,為遞減數(shù)列。

  例3:求等差數(shù)列13,8,3,—2,…的第5項(xiàng)。第89項(xiàng)呢?

  放手讓學(xué)生利用各種方法求a89,從中找出合適的方法,如利用不完全歸納法或累加法,然后引出求一般等差數(shù)列的通項(xiàng)公式。

  2、等差數(shù)列的.通項(xiàng)公式:已知等差數(shù)列的首項(xiàng)是,公差是,求、

 。1)由遞推公式利用用不完全歸納法得出

  由等差數(shù)列的定義:,……∴,……

  所以,該等差數(shù)列的通項(xiàng)公式:、

  (驗(yàn)證n=1時(shí)成立)。

  這種由特殊到一般的推導(dǎo)方法,不能代替嚴(yán)格證明。要用數(shù)學(xué)歸納法證明的。

 。2)累加法求等差數(shù)列的通項(xiàng)公式

  讓學(xué)生體驗(yàn)推導(dǎo)過(guò)程。(驗(yàn)證n=1時(shí)成立)

  3、例題及練習(xí):

  應(yīng)用等差數(shù)列的通項(xiàng)公式

  追問(wèn):(1)—232是否為例3等差數(shù)列中的項(xiàng)?若是,是第幾項(xiàng)?

 。2)此數(shù)列中有多少項(xiàng)屬于區(qū)間[—100,0]?

  法一:求出a1,d,借助等差數(shù)列的通項(xiàng)公式求a20。

  法二:求出d,a20=a5+15d=a12+8d

  在例4基礎(chǔ)上,啟發(fā)學(xué)生猜想證明

  練習(xí):

  梯子的最高一級(jí)寬31cm,最低一級(jí)寬119cm,中間還有3級(jí),各級(jí)的寬度成等差數(shù)列,請(qǐng)計(jì)算中間各級(jí)的寬度。

  觀察圖像特征。

  思考:an是關(guān)于n的一次式,是數(shù)列{an}為等差數(shù)列的什么條件?

  課后反思:這節(jié)課的重點(diǎn)是等差數(shù)列定義和通項(xiàng)公式概念的理解,而不是公式的應(yīng)用,有些應(yīng)試教育的味道。有時(shí)搶學(xué)生的回答,沒(méi)有真正放手讓學(xué)生的思維發(fā)展,學(xué)生活動(dòng)太少,課堂氛圍不好。學(xué)生對(duì)問(wèn)題的反應(yīng)出乎設(shè)計(jì)的意料時(shí),應(yīng)該順著學(xué)生的思維發(fā)展。

等差數(shù)列教學(xué)設(shè)計(jì)5

  一、課前預(yù)習(xí):

  1、預(yù)習(xí)目標(biāo):

 、偻ㄟ^(guò)實(shí)例,理解等差數(shù)列的概念;探索并掌握等差數(shù)列的通項(xiàng)公式;

 、谀茉诰唧w的問(wèn)題情境中,發(fā)現(xiàn)數(shù)列的等差關(guān)系并能用有關(guān)知識(shí)解決相應(yīng)的問(wèn)題;

 、垠w會(huì)等差數(shù)列與一次函數(shù)的關(guān)系。

  2、預(yù)習(xí)內(nèi)容:

  (1)、等差數(shù)列的定義:一般地,如果一個(gè)數(shù)列從起,每一項(xiàng)與它的前一項(xiàng)的差等于同一個(gè),那么這個(gè)數(shù)列就叫等差數(shù)列,這個(gè)常數(shù)叫做等差數(shù)列的,通常用字母表示。

 。2)、等差中項(xiàng):若三個(gè)數(shù)組成等差數(shù)列,那么A叫做與的,即或。

 。3)、等差數(shù)列的單調(diào)性:等差數(shù)列的公差時(shí),數(shù)列為遞增數(shù)列;時(shí),數(shù)列為遞減數(shù)列;時(shí),數(shù)列為常數(shù)列;等差數(shù)列不可能是。

 。4)、等差數(shù)列的通項(xiàng)公式:。

  二、課內(nèi)探究學(xué)案

  例1、1、求等差數(shù)列8、5、2… …的第20項(xiàng)

  解:由得:

  2、是不是等差數(shù)列、 、 … …的項(xiàng)?如果是,是第幾項(xiàng)?

  解:由得

  由題意知,本題是要回答是否存在正整數(shù)n,使得:

  成立

  解得:即是這個(gè)數(shù)列的第100項(xiàng)。

  例2、某市出租車的計(jì)價(jià)標(biāo)準(zhǔn)為1.2元/km,起步價(jià)為10元,即最初的4km(不含4km)計(jì)費(fèi)為10元,如果某人乘坐該市的出租車去往14km處的目的地,且一路暢通,等候時(shí)間為0,需要支付多少車費(fèi)?

  分析:可以抽象為等差數(shù)列的數(shù)學(xué)模型。4km處的車費(fèi)記為:公差

  當(dāng)出租車行至目的地即14km處時(shí),n=11求

  所以:

  例3:數(shù)列是等差數(shù)列嗎?

  變式練習(xí):已知數(shù)列{}的通項(xiàng)公式,其中、為常數(shù),這個(gè)數(shù)列是等差數(shù)列嗎?若是,首項(xiàng)和公差分別是多少?

 。ㄖ付▽W(xué)生求解)

  解:取數(shù)列{}中任意兩項(xiàng)和

  它是一個(gè)與n無(wú)關(guān)的常數(shù),所以{}是等差數(shù)列?

  并且:

  三、課后練習(xí)與提高

  在等差數(shù)列中,已知求=

  已知求

  已知求

  已知求

  2、已知,則的`等差中項(xiàng)為()

  A B C D

  3、20xx是等差數(shù)列4,6,8…的()

  A第998項(xiàng)B第999項(xiàng)C第1001項(xiàng)D第1000項(xiàng)

  4、在等差數(shù)列40,37,34,…中第一個(gè)負(fù)數(shù)項(xiàng)是()

  A第13項(xiàng)B第14項(xiàng)C第15項(xiàng)D第16項(xiàng)

  5、在等差數(shù)列中,已知?jiǎng)t等于()

  A 10 B 42 C43 D45

  6、等差數(shù)列-3,1,5…的第15項(xiàng)的值為

  7、等差數(shù)列中,且從第10項(xiàng)開始每項(xiàng)都大于1,則此等差數(shù)列公差d的取值范圍是

  8、在等差數(shù)列中,已知,求首項(xiàng)與公差d

  9、在公差不為零的等差數(shù)列中,為方程的跟,求的通項(xiàng)公式。

  10、數(shù)列滿足,設(shè)

  判斷數(shù)列是等差數(shù)列嗎?試證明。

  求數(shù)列的通項(xiàng)公式

  11、數(shù)列滿足,問(wèn)是否存在適當(dāng)?shù),使是等差?shù)列?

【等差數(shù)列教學(xué)設(shè)計(jì)】相關(guān)文章:

《等差數(shù)列》教學(xué)設(shè)計(jì)03-05

教學(xué)設(shè)計(jì)的設(shè)計(jì)07-17

教學(xué)設(shè)計(jì)模板-教學(xué)設(shè)計(jì)模板08-02

ai教學(xué)設(shè)計(jì) ai的教學(xué)設(shè)計(jì)05-29

蟬教學(xué)設(shè)計(jì)優(yōu)秀教學(xué)設(shè)計(jì)04-05

流程設(shè)計(jì)教學(xué)設(shè)計(jì)12-09

《鳥島》教學(xué)設(shè)計(jì)小島教學(xué)設(shè)計(jì)及設(shè)計(jì)意圖11-11

怎樣教學(xué)生構(gòu)思教學(xué)設(shè)計(jì)教學(xué)設(shè)計(jì)及教學(xué)思路12-28

教學(xué)設(shè)計(jì)07-11