中位線的教學(xué)設(shè)計(jì)
作為一名教學(xué)工作者,常常要根據(jù)教學(xué)需要編寫(xiě)教學(xué)設(shè)計(jì),借助教學(xué)設(shè)計(jì)可以促進(jìn)我們快速成長(zhǎng),使教學(xué)工作更加科學(xué)化。一份好的教學(xué)設(shè)計(jì)是什么樣子的呢?下面是小編精心整理的中位線的教學(xué)設(shè)計(jì),僅供參考,希望能夠幫助到大家。
中位線的教學(xué)設(shè)計(jì)1
一、教材分析
本節(jié)在教材中的地位和作用。
三角形中位線是三角形中重要的線段,三角形中位線定理是一個(gè)重要性質(zhì)定理,它是前面已學(xué)過(guò)的平行線、全等三角形、平行四邊形等知識(shí)內(nèi)容的應(yīng)用和深化,在三角形中位線定理的證明及應(yīng)用中,處處滲透了化歸思想,它對(duì)拓展學(xué)生的思維有著積極的意義。
2、教學(xué)目標(biāo)
。ㄒ唬┲R(shí)目標(biāo)
。1)理解三角形中位線的定義;
。2)掌握三角形中位線定理及其應(yīng)用。
。ǘ┠芰δ繕(biāo)
通過(guò)對(duì)三角形中位線定理的猜想及證明,提高了同學(xué)們提出問(wèn)題,分析問(wèn)題及解決問(wèn)題的能力。
。ㄈ┣楦心繕(biāo)
進(jìn)一步培養(yǎng)學(xué)生合作、交流的能力和團(tuán)隊(duì)精神,培養(yǎng)學(xué)生實(shí)事求是、善于觀察、勇于探索、嚴(yán)密細(xì)致的科學(xué)態(tài)度;同時(shí)滲透歸納、類比、轉(zhuǎn)化等數(shù)學(xué)思想方法。
3、重點(diǎn)與難點(diǎn)
重點(diǎn):理解并應(yīng)用三角形中位線定理。
難點(diǎn):三角形中位線定理的運(yùn)用。
二、教法分析
為了充分調(diào)動(dòng)學(xué)生的積極性,使學(xué)生變被動(dòng)學(xué)習(xí)為主動(dòng)學(xué)習(xí),我采用了“引導(dǎo)探究”式的教學(xué)模式,在課堂教學(xué),我始終貫徹“教師為主導(dǎo),學(xué)生為主體,探究為主線”的教學(xué)思想,通過(guò)引導(dǎo)學(xué)生實(shí)驗(yàn)、觀察、比較、分析和總結(jié),使學(xué)生充分地動(dòng)手、動(dòng)口、動(dòng)腦,參與教學(xué)全過(guò)程。
三、學(xué)法分析
本節(jié)課在實(shí)驗(yàn)操作的基礎(chǔ)上,以問(wèn)題為核心,創(chuàng)設(shè)情景,通過(guò)教師的適時(shí)引導(dǎo),學(xué)生間、師生間的交流互動(dòng),啟迪學(xué)生的思維,讓學(xué)生掌握實(shí)驗(yàn)與觀察、分析與比較、討論與釋疑、概括與歸納、鞏固與提高等科學(xué)的學(xué)習(xí)方法;學(xué)會(huì)舉一反三,靈活轉(zhuǎn)換的學(xué)習(xí)方法,學(xué)會(huì)運(yùn)用化歸思想去解決問(wèn)題。
四、教學(xué)過(guò)程設(shè)計(jì)
。ㄒ唬┗仡櫲切沃芯概念,導(dǎo)入新課;
。ǘ⿲(xiě)出三角形中位線概念,定理;
。ㄈ┌鍟(shū)一種證明方法;
。ㄋ模┏鰞蓚(gè)應(yīng)用定理的例題,板書(shū)一題具體步驟;
(五)請(qǐng)一位同學(xué)演板寫(xiě)書(shū)另一題具體步驟;
。┛偨Y(jié)學(xué)的內(nèi)容并布置作。
中位線的教學(xué)設(shè)計(jì)2
教案背景
1、面向?qū)W生:初二
2、課時(shí):1
3、學(xué)科:數(shù)學(xué)
4、學(xué)生準(zhǔn)備:提前預(yù)習(xí)本節(jié)課的內(nèi)容,尺規(guī)和練習(xí)本。
教材分析
1、教材的地位和作用:
本節(jié)課是初二數(shù)學(xué)下冊(cè)第十八章18.1.2平行四邊形判定中的第三課時(shí)三角形中位線的內(nèi)容。三角形中位線既是前面已學(xué)過(guò)的平行線、全等三角形、平行四邊形性質(zhì)等知識(shí)內(nèi)容的應(yīng)用和深化,同時(shí)為進(jìn)一步學(xué)習(xí)梯形、任意四邊形的中位線打下基礎(chǔ),尤其是在判定兩直線平行和論證線段倍分關(guān)系時(shí)常常用到。在三角形中位線定理的證明及應(yīng)用中,處處滲透了歸納、類比、轉(zhuǎn)化等化歸思想,它是數(shù)學(xué)解題的重要思想方法,對(duì)拓展學(xué)生的思維有著積極的意義。
2、教學(xué)目標(biāo):
知識(shí)目標(biāo):
。1)理解三角形中位線的概念
。2)會(huì)證明三角形的中位線定理
。3)能應(yīng)用三角形中位線定理解決相關(guān)的問(wèn)題;
過(guò)程與方法目標(biāo):
進(jìn)一步經(jīng)歷“探索—發(fā)現(xiàn)—猜想—證明”的過(guò)程,發(fā)展推理論證的能力。體會(huì)合情推理與演繹推理在獲得結(jié)論的過(guò)程中發(fā)揮的作用。
情感目標(biāo)
畫(huà)一個(gè)任意三角形的中位線,用猜測(cè)和度量判斷中位線與第三邊的位置和數(shù)量關(guān)系,進(jìn)一步培養(yǎng)學(xué)生合作、交流的能力和團(tuán)隊(duì)精神,培養(yǎng)學(xué)生實(shí)事求是、善于觀察、勇于探索、嚴(yán)密細(xì)致的科學(xué)態(tài)度。
3、教學(xué)重難點(diǎn):
重點(diǎn):理解并應(yīng)用三角形中位線定理。
難點(diǎn):三角形中位線定理的證明和運(yùn)用。
教學(xué)方法
學(xué)生在前面的數(shù)學(xué)學(xué)習(xí)中具有了一定的合作學(xué)習(xí)的經(jīng)驗(yàn),為了讓學(xué)生進(jìn)一步經(jīng)歷、猜測(cè)、證明的過(guò)程,我采。?jiǎn)l(fā)式教學(xué),在課堂教學(xué)。
教學(xué)過(guò)程
。ㄒ唬┗仡櫲切沃形痪:
三角形一個(gè)頂點(diǎn)和對(duì)邊中點(diǎn)連結(jié)的線段
情感分析:讓學(xué)生首先通過(guò)原有知識(shí)三角形中線端點(diǎn)特征來(lái)引入三角形中位線更加好理解。
(二)概念提。
像(EF、FD、DE)的線段的端點(diǎn)有什么特點(diǎn)?
情感分析:通過(guò)問(wèn)題,讓學(xué)生去發(fā)現(xiàn)中位線端點(diǎn)的特點(diǎn),加深對(duì)中位線定義的提取和理解。
。ㄈ┮鋈切蔚闹形痪定義:
連接三角形兩邊中點(diǎn)的線段叫做中位線
情感分析:直接引出定義,讓學(xué)生更容易去理解中位線的含義并且對(duì)端點(diǎn)特征的理解?於(jiǎn)單且易懂。
。ㄋ模└拍顚(duì)比記憶:
。1)相同之處——都和邊的中點(diǎn)有關(guān);
。2)不同之處:三角形中位線:中點(diǎn)連線;三角形中線:中點(diǎn)與端點(diǎn)(頂點(diǎn))連線
情感分析:通過(guò)對(duì)比記憶,加深兩者的區(qū)別與聯(lián)系,對(duì)中位線的理解進(jìn)一步提升。
(五)探究中位線的性質(zhì):
一般的三角形的中位線(DE)與第三邊(BC)存在哪些關(guān)系?
問(wèn)題:①DE與BC存在怎么樣的位置和數(shù)量關(guān)系?作圖觀察并猜想
、诮Y(jié)合圖形,請(qǐng)找出已知部分?要求證部分?
情感分析:對(duì)定義的理解后,方便對(duì)中位線性質(zhì)的一個(gè)探究,在探究過(guò)程中,讓學(xué)生通過(guò)畫(huà)任意三角形的一條中位線,并且通過(guò)學(xué)習(xí)工具(量角器、三角板、刻度尺和圓規(guī)),通過(guò)量同位角和三角板的推移來(lái)觀察猜測(cè)中位線與第三邊是平行的,再來(lái)通過(guò)刻度尺測(cè)量是它的二分之一。由于方法的局限性(誤差),所以探究用數(shù)學(xué)客觀的邏輯推理中位線的性質(zhì)。而且通過(guò)命題來(lái)找出已知和求證部分也是學(xué)生必須掌握的重難點(diǎn),通過(guò)這里也可以讓學(xué)生再次鞏固提升。
。┳C明中位線與第三邊的關(guān)系:
已知:在△ABC中,D、E分別是AB和AC中點(diǎn)
證明:
方法一:證明:延長(zhǎng)DE到F,使EF=DE,連結(jié)CF.
方法二:證明:如圖,延長(zhǎng)DE至F,使EF=DE,連接CD、AF、CF
情感分析:通過(guò)證明的方法,引導(dǎo)學(xué)生做輔助線時(shí)候的邏輯推理,多問(wèn)學(xué)生為什么會(huì)想到這樣去做輔助線的。倍長(zhǎng)線段是怎么想到的?為什么會(huì)想到連接CF?為什么會(huì)想到證明四邊形?引發(fā)學(xué)生思考。
。ㄆ撸w納:
三角形中位線定理:三角形的中位線平行于第三邊,且等于第三邊的一半。
用符號(hào)語(yǔ)言表示:∵DE是△ABC的中位線
∴
位置關(guān)系且數(shù)量關(guān)系
情感分析:通過(guò)剛剛的證明引導(dǎo)學(xué)生最后歸納出今天新課的重點(diǎn)內(nèi)容三角形中位線的性質(zhì),對(duì)數(shù)學(xué)符號(hào)語(yǔ)言的書(shū)寫(xiě)格式進(jìn)行板書(shū),讓學(xué)生更加理解和學(xué)會(huì)書(shū)寫(xiě)格式要求。
。ò耍┚毩(xí)鞏固:
1、在△ABC中,E,D,F分別是AB,BC,CA的中點(diǎn),AB=6,AC=4,BC=5,則△EDF的周長(zhǎng)是?
情感分析:通過(guò)簡(jiǎn)單的運(yùn)用,能夠讓學(xué)生從簡(jiǎn)單的基礎(chǔ)知識(shí)對(duì)中位線性質(zhì)的掌握,基本全班學(xué)生都能從中掌握。
變式1:在△ABC中,E,D,F分別是AB,BC,CA的中點(diǎn),AB=6,AC=4,則四邊形AEDF的周長(zhǎng)是?
情感分析:通過(guò)變式1讓學(xué)生在原來(lái)題型的變化,掌握異題同解的思想方法,促進(jìn)學(xué)生對(duì)數(shù)學(xué)產(chǎn)生興趣。
2、如圖,在△ABC中,中線BE,CD交于點(diǎn)O 、 F 、 G分別是OB 、 OC的中點(diǎn)
求證:四邊形DFGE是平行四邊形
情感分析:證明平行四邊形的時(shí)候往往要用三角形去解決,所以引導(dǎo)學(xué)生用平行四邊形判定的時(shí)候一定要主要平行且相等,要學(xué)會(huì)在哪個(gè)三角形找出相應(yīng)的中位線來(lái)進(jìn)行運(yùn)用。
。ň牛╈柟烫岣撸
3、已知:四邊形ABCD中,E、F、G、H分別是AB、BC、CD、DA的中點(diǎn).
求證:四邊形EFGH是平行四邊形.
輔助線:當(dāng)有中位線三角形不完整時(shí)則需補(bǔ)完整三角形
情感分析:中點(diǎn)四邊形主要?dú)w類為怎么去做輔助線,引導(dǎo)學(xué)生在折線段中的中點(diǎn),找到相應(yīng)的三角形中位線,主要是攻克三角形中位線的做法。
動(dòng)點(diǎn)問(wèn)題4、如圖:長(zhǎng)方形ABCD中R、P分別是DC、BC邊上的點(diǎn),E、F分別是AP、RP的中點(diǎn),當(dāng)P在BC上從B向C移動(dòng)而R不動(dòng)時(shí),線段EF長(zhǎng)()
A.逐漸增大
B.逐漸變小
C.不變
D.先增大后變少
情感分析:涉及到動(dòng)點(diǎn)問(wèn)題
首先要教會(huì)學(xué)生要學(xué)會(huì)找出
哪些是定點(diǎn),哪些是動(dòng)點(diǎn)的問(wèn)題,才能解決相應(yīng)的變化問(wèn)題通過(guò)動(dòng)畫(huà)來(lái)演示后再進(jìn)行證明講解,讓學(xué)生有一個(gè)直觀的認(rèn)識(shí)后,再用客觀推理論證,培養(yǎng)嚴(yán)密的邏輯思維推理能力。
5、如圖,點(diǎn)E、F、G、H分別是線段AB、BC、CD、AD的中點(diǎn),求證四邊形EFGH是平行四邊形
情感分析:學(xué)會(huì)做輔助線,引導(dǎo)學(xué)生構(gòu)成完整的.三角形中位線,直接運(yùn)用定理。
6、已經(jīng)△ABC是銳角三角形,分別以AB 、 AC為邊向外側(cè)作兩個(gè)等邊△ABM和△CAN,D、E、F分別是MB、BC、CN的中點(diǎn),連結(jié)DE,F(xiàn)E
求證:DE=EF
情感分析:構(gòu)成完整的三角形中位線后,要證明線段相等,則需要證明三角形的全等,找到相應(yīng)的判定根據(jù)已知的條件,回顧全等三角形的證明。
7、已知:在ABCD中,E是CD的中點(diǎn),F(xiàn)是AE的中點(diǎn),F(xiàn)C與BE交于G.
求證:GF=GC.
證明:取BE的中點(diǎn)M,連接FM、CM
輔助線:已知中點(diǎn)與選取鄰邊中點(diǎn)的連線,
形成中位線
情感分析:通過(guò)前面例題的對(duì)比,很多學(xué)生會(huì)覺(jué)得連接兩點(diǎn)就可以構(gòu)成三角形的中位線,從而產(chǎn)生慣性思維,導(dǎo)致這題目解答不出,所以這方面可以通過(guò)這題進(jìn)行歸類輔助線的做法,已知中點(diǎn)與選取鄰邊中點(diǎn)的連線,形成中位線。
。ㄊ┛偨Y(jié):
三角形的中位線定義:連接三角形兩邊中點(diǎn)的線段叫做三角形的中位線
三角形的中位線定理用途:三角形的中位線平行于三角形的第三邊,且等于第三邊的一半
教學(xué)反思:
本節(jié)課采用“問(wèn)題—探究—發(fā)現(xiàn)—應(yīng)用”的啟發(fā)性教學(xué)模式,把大部分時(shí)間交給了學(xué)生去思考探究,讓學(xué)生畫(huà)出任意三角形的中位線去探究與第三邊的關(guān)系,從而讓學(xué)生動(dòng)手動(dòng)腦思考。而教師不是一位旁觀者,要積極的作為引導(dǎo)者、合作者,組織者。整節(jié)課教師注意提高學(xué)生的邏輯證明能力,強(qiáng)調(diào)直觀與抽象結(jié)合,以及邏輯思維推理能力的訓(xùn)練,讓學(xué)生經(jīng)歷了數(shù)學(xué)的快樂(lè)之旅。
中位線的教學(xué)設(shè)計(jì)3
一、設(shè)計(jì)思路
。ㄒ唬┙滩姆治
本課時(shí)所要探究的三角形中位線定理是學(xué)生以前從未接觸過(guò)的內(nèi)容。因此,在教學(xué)中通過(guò)創(chuàng)設(shè)有趣的情境問(wèn)題,激發(fā)學(xué)生的學(xué)習(xí)興趣,注重新舊知識(shí)的聯(lián)系,強(qiáng)調(diào)直觀與抽象的結(jié)合,鼓勵(lì)學(xué)生大膽猜想,大膽探索新穎獨(dú)特的證明方法和思路,讓學(xué)生充分經(jīng)歷“探索—發(fā)現(xiàn)—猜想—證明”這一過(guò)程,體會(huì)合情推理與演繹推理在獲得結(jié)論的過(guò)程中發(fā)揮的作用,同時(shí)滲透歸納、類比、轉(zhuǎn)化等數(shù)學(xué)思想方法。通過(guò)本節(jié)課的學(xué)習(xí),應(yīng)使學(xué)生理解三角形中位線定理不僅指出了三角形的中位線與第三邊的位置關(guān)系和數(shù)量關(guān)系,而且為證明線段之間的位置關(guān)系和數(shù)量關(guān)系(倍分關(guān)系)提供了新的思路,從而提高學(xué)生分析問(wèn)題、解決問(wèn)題的能力。
。ǘ⿲W(xué)情分析
本班學(xué)生基礎(chǔ)知識(shí)比較扎實(shí),接受新知識(shí)的意識(shí)較強(qiáng),對(duì)于本章有關(guān)平行四邊形的性質(zhì)和判定的內(nèi)容掌握較好,但知識(shí)遷移能力較差,數(shù)學(xué)思想方法運(yùn)用不夠靈活。因此,本節(jié)課著眼于基礎(chǔ),注重能力的培養(yǎng),積極引導(dǎo)學(xué)生首先通過(guò)實(shí)際操作獲得結(jié)論,然后借助于平行四邊形的有關(guān)知識(shí)進(jìn)行探索和證明。在此過(guò)程中注重知識(shí)的遷移同時(shí)重點(diǎn)滲透轉(zhuǎn)化、類比、歸納的數(shù)學(xué)思想方法,使學(xué)生的優(yōu)勢(shì)得以發(fā)揮,劣勢(shì)得以改進(jìn),從而提高學(xué)生的整體水平。
三)教學(xué)目標(biāo)
1、知識(shí)目標(biāo)
1)了解三角形中位線的概念。
2)掌握三角形中位線定理的證明和有關(guān)應(yīng)用。
2、能力目標(biāo)
1)經(jīng)歷“探索—發(fā)現(xiàn)—猜想—證明”的過(guò)程,進(jìn)一步發(fā)展推理論證能力。
2)能夠用多種方法證明三角形的中位線定理,體會(huì)在證明過(guò)程中所運(yùn)用的歸納、類比、轉(zhuǎn)化等數(shù)學(xué)思想方法。
3)能夠應(yīng)用三角形的中位線定理進(jìn)行有關(guān)的論證和計(jì)算,逐步提高學(xué)生分析問(wèn)題和解決問(wèn)題的能力。
3、情感目標(biāo)
通過(guò)學(xué)生動(dòng)手操作、觀察、實(shí)驗(yàn)、推理、猜想、論證等自主探索與合作交流的過(guò)程,激發(fā)學(xué)生的學(xué)習(xí)興趣,讓學(xué)生真正體驗(yàn)知識(shí)的發(fā)生和發(fā)展過(guò)程,培養(yǎng)學(xué)生的創(chuàng)新意識(shí)。
。ㄋ模┙虒W(xué)重點(diǎn)與難點(diǎn)
教學(xué)重點(diǎn):三角形中位線的概念與三角形中位線定理的證明。
教學(xué)難點(diǎn):三角形中位線定理的多種證明。
。ㄎ澹┙虒W(xué)方法與學(xué)法指導(dǎo)
對(duì)于三角形中位線定理的引入采用發(fā)現(xiàn)法,在教師的引導(dǎo)下,學(xué)生通過(guò)探索、猜測(cè)等自主探究的方法先獲得結(jié)論再去證明。在此過(guò)程中,注重對(duì)證明思路的啟發(fā)和數(shù)學(xué)思想方法的滲透,提倡證明方法的多樣性,而對(duì)于定理的證明過(guò)程,則運(yùn)用多媒體演示。
。┙叹吆蛯W(xué)具的準(zhǔn)備
教具:多媒體、投影儀、三角形紙片、剪刀、常用畫(huà)圖工具。
學(xué)具:三角形紙片、剪刀、刻度尺、量角器。
二、教學(xué)過(guò)程
1、一道趣題——課堂因你而和諧
問(wèn)題:你能將任意一個(gè)三角形分成四個(gè)全等的三角形嗎?這四個(gè)全等三角形能拼湊成一個(gè)平行四邊形嗎?(板書(shū))
。ㄟ@一問(wèn)題激發(fā)了學(xué)生的學(xué)習(xí)興趣,學(xué)生積極主動(dòng)地加入到課堂教學(xué)中,課堂氣氛變得較為和諧,課堂也鮮活起來(lái)了。)
學(xué)生想出了這樣的方法:順次連接三角形每?jī)蛇叺闹悬c(diǎn),看上去就得到了四個(gè)全等的三角形.
如圖中,將△ade繞e點(diǎn)沿順(逆)時(shí)針?lè)较蛐D(zhuǎn)180°可得平行四邊形adfe。
問(wèn)題:你有辦法驗(yàn)證嗎?
2、一種實(shí)驗(yàn)——課堂因你而生動(dòng)
學(xué)生的驗(yàn)證方法較多,其中較為典型的方法如下:
生1:沿de、df、ef將畫(huà)在紙上的△abc剪開(kāi),看四個(gè)三角形能否重合。
生2:分別測(cè)量四個(gè)三角形的三邊長(zhǎng)度,判斷是否可利用“sss”來(lái)判定三角形全等。
生3:分別測(cè)量四個(gè)三角形對(duì)應(yīng)的邊及角,判斷是否可用“sas、asa或aas”判定全等。
引導(dǎo):上述同學(xué)都采用了實(shí)驗(yàn)法,存在誤差,那么如何利用推理論證的方法驗(yàn)證呢?
3、一種探索——課堂因你而鮮活
師:把連接三角形兩邊中點(diǎn)的線段叫做三角形的中位線.(板書(shū))
問(wèn)題:三角形的中位線與第三邊有怎樣的關(guān)系呢?在前面圖1中你能發(fā)現(xiàn)什么結(jié)論呢?
。▽W(xué)生的思維開(kāi)始活躍起來(lái),同學(xué)之間開(kāi)始互相討論,積極發(fā)言)
學(xué)生的結(jié)果如下:de∥bc,df∥ac,ef∥ab,ae=ec,bf=fc,bd=ad,
△ade≌△dbf≌△efc≌△def,de=bc,df=ac,ef=ab……
猜想:三角形的中位線平行于第三邊,且等于第三邊的一半。(板書(shū))
師:如何證明這個(gè)猜想的命題呢?
生:先將文字問(wèn)題轉(zhuǎn)化為幾何問(wèn)題然后證明。
已知:de是abc的中位線,求證:de//bc、de=bc。
學(xué)生思考后教師啟發(fā):要證明兩條直線平行,可以利用“三線八角”的有關(guān)內(nèi)容進(jìn)行轉(zhuǎn)化,而要證明一條線段的長(zhǎng)等于另一條線段長(zhǎng)度的一半,可采用將較短的線段延長(zhǎng)一倍,或者截取較長(zhǎng)線段的一半等方法進(jìn)行轉(zhuǎn)化歸納。
(學(xué)生積極討論,得出幾種常用方法,大致思路如下)
生1:延長(zhǎng)de到f使ef=de,連接cf
由△ade≌△cfe(sas)
得adfc從而bdfc
所以,四邊形dbcf為平行四邊形
得dfbc
可得debc(板書(shū))
生2:將ade繞e點(diǎn)沿順(逆)時(shí)針?lè)较蛐D(zhuǎn)180°,使得點(diǎn)a與點(diǎn)c重合,
即ade≌cfe,
可得bdcf,
得平行四邊形dbcf
得dfbc可得debc
生3:延長(zhǎng)de到f使de=ef,連接af、cf、cd,可得adcf
得dbcf
得dfbc
可得debc
生4:利用△ade∽△abc且相似比為1:2
即
可得debc
師:還有其它不同方法嗎?
。▽W(xué)生面面相覷,學(xué)生5舉手發(fā)言)
4、一種創(chuàng)新——課堂因你而美麗
生5:過(guò)點(diǎn)d作df//bc交ac于點(diǎn)f
則adf∽abc
可得
又e是ac中點(diǎn)
可得
因此ae=af
即e點(diǎn)與f點(diǎn)重合
所以de//bc且de=bc
。üP者事先只局限于思考利用平行四邊形及三角形相似的性質(zhì)解決問(wèn)題,沒(méi)想到學(xué)生的發(fā)言如此精彩,為整個(gè)課堂添加了不少亮色。)
師:很好,好極了!這種證法在數(shù)學(xué)中叫做同一法,連老師也沒(méi)想到。太棒了,大家要向生5學(xué)習(xí),用變化的、動(dòng)態(tài)的、創(chuàng)新的觀點(diǎn)來(lái)看問(wèn)題,努力去尋找更好更簡(jiǎn)捷的方法。
5、一種思考——課堂因你而添彩
問(wèn)題:三角形的中位線與中線有什么區(qū)別與聯(lián)系呢?
容易得出如下事實(shí):都是三角形內(nèi)部與邊的中點(diǎn)有關(guān)的線段.但中位線平行于第三邊,且等于第三邊的一半,三角形的一條中位線與第三邊上的中線互相平分.(學(xué)生交流、探索、思考、驗(yàn)證)
6、一種照應(yīng)——課堂因你而完整
問(wèn)題:你能利用三角形中位線定理說(shuō)明本節(jié)課開(kāi)始提出的趣題的合理性嗎?(學(xué)生爭(zhēng)先恐后回答,課堂氣氛活躍)
7、一種應(yīng)用——課堂因你而升華
做一做:任意一個(gè)四邊形,將其四邊的中點(diǎn)依次連接起來(lái)所得新四邊形的形狀有什么特征?
。▽W(xué)生積極思考發(fā)言,師生共同完成此題目的最常見(jiàn)解法。)
已知:四邊形abcd,點(diǎn)e、f、g、h
分別是四邊的中點(diǎn),求證:四邊形efgh是平行四邊形。
證明:連結(jié)ac
∵e、f分別是ab、bc的中點(diǎn),
∴ef是abc的中位線,
∴ef∥ac且ef=ac,
同理可得:gh∥ac且gh=ac,
∴ efgh,
∴四邊形efgh為平行四邊形。(板書(shū))
其它解法由學(xué)生口述完成。
8、一種引申——課堂因你而讓人回味無(wú)窮
問(wèn)題:如果將上例中的“任意四邊形”改為“平行四邊形、矩形、菱形、正方形”,結(jié)論又會(huì)怎么樣呢?(學(xué)生作為作業(yè)完成。)
9、一句總結(jié)——課堂因你而彰顯無(wú)窮魅力
學(xué)生總結(jié)本節(jié)內(nèi)容:三角形的中位線和三角形中位線定理。(另附作業(yè))
三、板書(shū)設(shè)計(jì)
三角形的中位線
1、問(wèn)題
2、三角形中位線定義
3、三角形中位線定理證明
4、做一做
5、練習(xí)
6、小結(jié)
四、課后反思
本節(jié)課以“如何將一個(gè)任意三角形分為四個(gè)全等的三角形”這一問(wèn)題為出發(fā)點(diǎn),以平行四邊形的性質(zhì)定理和判定定理為橋梁,探究了三角形中位線的基本性質(zhì)和應(yīng)用。在本節(jié)課中,學(xué)生親身經(jīng)歷了“探索—發(fā)現(xiàn)—猜想—證明”的探究過(guò)程,體會(huì)了證明的必要性和證明方法的多樣性。在此過(guò)程中,筆者注重新舊知識(shí)的聯(lián)系,同時(shí)強(qiáng)調(diào)轉(zhuǎn)化、類比、歸納等數(shù)學(xué)思想方法的恰當(dāng)應(yīng)用,達(dá)到了預(yù)期的目的。
【中位線的教學(xué)設(shè)計(jì)】相關(guān)文章:
九年級(jí)數(shù)學(xué)三角形的中位線教學(xué)設(shè)計(jì)03-05
八年級(jí)數(shù)學(xué)三角形的中位線教學(xué)設(shè)計(jì)03-05
中的寫(xiě)法教學(xué)設(shè)計(jì)11-20
《鏡子中的數(shù)學(xué)》教學(xué)設(shè)計(jì)04-30