亚洲v欧美v国产v在线成_制服丝袜中文字幕丝袜专区_一区二区三区韩国电影_激情欧美一区二区中文字幕

我要投稿 投訴建議

圓錐的體積優(yōu)秀教學設計

時間:2024-03-08 09:31:44 美云 教學設計 我要投稿

圓錐的體積優(yōu)秀教學設計(通用10篇)

  作為一名教職工,有必要進行細致的教學設計準備工作,教學設計是一個系統(tǒng)設計并實現(xiàn)學習目標的過程,它遵循學習效果最優(yōu)的原則嗎,是課件開發(fā)質量高低的關鍵所在。那么你有了解過教學設計嗎?以下是小編收集整理的圓錐的體積優(yōu)秀教學設計,歡迎閱讀,希望大家能夠喜歡。

圓錐的體積優(yōu)秀教學設計(通用10篇)

  圓錐的體積優(yōu)秀教學設計 1

  教學目的:

  使學生初步掌握圓錐體積的計算公式。

  并能運用公式正確地計算圓錐的體積,發(fā)展學生的空間觀念。

  教學難點:

  圓錐的體積應用

  學具準備:

  等底等高的圓柱和圓錐,水和沙,多媒體課件

  教學時間:

  一課時

  教學過程:

  一、復習

  1、圓錐有什么特征?(課件出示)

  使學生進一步熟悉圓錐的特征:底面,側面,高和頂點。

  2、圓柱體積的計算公式是什么?

  指名學生回答,并板書公式:“圓柱的體積=底面積×高”。同時滲透轉化方法在數(shù)學學習中的應用。

  二、導人新課

  出示一個圓錐形的谷堆,給出底面直徑和高,讓學生思考如何求它的體積。

  板書課題:圓錐的體積

  三、新課

  1、教學圓錐體積的計算公式。

  師:請大家回億一下,我們是怎樣得到圓柱體積的計算公式的?

  指名學生敘述圓柱體積計算公式的推導過程,使學生明確求圓柱的體積是通過切拼成長方體來求得的。

  師:那么圓錐的體積該怎樣求呢?能不能也通過已學過的圖形來求呢?

  先讓學生討論一下用什么方法求,然后指出:我們可以通過實驗的方法,得到計算圓錐體積的公式。

  教師拿出等底等高的圓柱和圓錐各一個,“大家看,這個圓錐和圓柱有什么共同的地方?”

  然后通過演示后,指出:“這個圓錐和圓柱是等底等高的,下面我們通過實驗,看看它們之間的體積有什么關系?”

  學生分組實驗。

  匯報實驗結果。先在圓錐里裝滿水,然后倒入圓柱。正好3次可以倒?jié)M。

  多指名說

  接著,教師課件邊演示邊敘述:現(xiàn)在圓錐和圓柱里都是空的。請大家注意觀察,看看能夠倒幾次正好把圓柱裝滿?

  問:把圓柱裝滿一共倒了幾次?

  生:3次。

  師:這說明了什么?

  生:這說明圓錐的體積是和它等底等高的圓柱的體積的。

  多找?guī)酌瑢W說。

  板書:圓錐的體積=1/3 ×圓柱體積

  師:圓柱的體積等于什么?

  生:等于“底面積×高”。

  師:那么,圓錐的體積可以怎樣表示呢?

  引導學生想到可以用“底面積×高”來替換“圓柱的體積”,于是可以得到圓錐體積的計算公式。

  板書:圓錐的體積= 1/3 ×底面積×高

  師:用字母應該怎樣表示?

  然后板書字母公式:V=1/3 SH

  師:在這個公式里你覺得哪里最應該注意?

  教學例1課件出示)一個圓錐的零件,底面積是19平方厘米,高是12厘米。這個零件的體積是多少?

  1/3×19×12=76((立方厘米))

  答:這個零件體積是76立方厘米。

  做一做:課件出示,學生回答后,教師訂正。

  1、一個圓錐的底面積是25平方分米,高是9分米,它的體積是多少?

  2、已知圓錐的`底面半徑r和高h,如何求體積V?

  3、已知圓錐的底面直徑d和高h,如何求體積V?

  4、已知圓錐的底面周長C和高h,如何求體積V?

  5、一個圓錐的底面直徑是20厘米,高是9厘米,它的體積是多少?

  例2課件出示)在打谷場上,有一個近似于圓錐的小麥堆,測得底面直徑是4米,高是1.2米。每立方米小麥約重735千克,這堆小麥大約有多少千克?(得數(shù)保留整千克)

  判斷:課件出示,學生回答后,教師訂正。

  1、圓柱體的體積一定比圓錐體的體積大( )

  2、圓錐的體積等于和它等底等高的圓柱體積的 ( ) 。

  3、正方體、長方體、圓錐體的體積都等于底面積×高。 ( )

  4、等底等高的圓柱和圓錐,如果圓柱體的體積是27立方米,那么圓錐的體積是9立方米( )

  四、教師小結。

  這節(jié)課我們學習了哪些知識?你還有什么問題嗎?

  五、作業(yè)。課本練習

  圓錐的體積優(yōu)秀教學設計 2

  設計意圖:

  本節(jié)內容是在學生了解了圓錐的特征,掌握了圓柱體積的計算方法基礎上進行教學的,教材重視類比,轉化思想的滲透,旨在讓學生理解掌握求圓錐體積的計算公式,會運用公式計算圓錐的體積。

  我的設計是“顛倒課堂”的一次嘗試,旨在讓學生晚上在家觀看教學視頻,進行深層次的掌握學習,一次學不會,還可以反復學習,直到學會為止。這是與傳統(tǒng)的“白天在課室聽老師講課,晚上回家做作業(yè)”的方式正好相反的課堂模式。

  教學目標:

  1、理解掌握求圓錐體積的計算公式和推導過程,會運用公式計算圓錐的體積。

  2、會應用公式計算圓錐的體積并解決一些實際問題。

  3、幫助學生建立空間觀念,培養(yǎng)學生抽象的邏輯思維能力,激發(fā)學生的想象力。

  教學重點:

  使學生初步掌握圓錐體積的計算方法并解決一些實際問題

  教學難點:

  圓錐體積計算方法和推導過程。

  教學過程:

  一、復習鋪墊:

  1、揭示課題:今天我們一起來探究如何計算圓錐的體積。

  2、以舊引新:我們知道,圓柱的體積=底面積×高,字母公式:V=Sh。如何計算圓錐的體積呢?圓柱的底面是圓的,圓錐的底面也是圓的,圓錐的體積與圓柱的體積有沒有關系呢?

  二、實驗操作:

  1、請看接下來的2個實驗:

  2、實驗準備:2組等底等高的圓柱、圓錐容器;水與沙子。

  3、播放視頻:

  實驗一:我們將圓錐容器裝滿水,再往圓柱容器里面倒(倒3次),3次正好裝滿。

  實驗二:我們將圓柱容器裝滿沙,再往圓錐容器里面倒(倒3次),3次正好裝滿。

  4、通過實驗你們發(fā)現(xiàn)了什么?

  三、公式推導:

  1、通過兩次的實驗我們可以得出結論:

  圓柱的體積是與它等底等高的圓錐體積的3倍;也就是說圓錐的體積是與它等底等高的圓柱體積的。

  2、寫成公式:圓錐的體積=與它等底等高的圓柱體積×;因為圓柱的體積=底面積×高,所以圓錐的體積=底面積×高×;寫成字母公式:V= Sh。因此,要求圓錐的體積,必須知道圓錐的底面積與高。

  3、如果知道圓錐的底面半徑r與高h,圓錐的體積公式還可以怎樣表示呢?因為底面圓的面積s=πr2,所以圓錐的體積V= πr2h。

  4、在應用圓錐體積公式時不要忘記乘!

  四、知識應用

  1、接下來我們應用公式解決實際問題。

  題:工地上有一堆沙子,近似于一個圓錐體,沙堆底面直徑4m,高1.2m。這堆沙子大約有多少立方米?(得數(shù)保留兩位小數(shù))

  2、分析題意:要求這堆沙子大約有多少立方米,就是求圓錐體沙堆的體積。根據(jù)公式我們需要知道沙堆的底面積與高。根據(jù)底面直徑4m,可以先求出沙堆的底面積,再用底面積乘高求出沙堆的體積。

  3、列式解答。(分步與綜合)

  五、知識小結:

  今天我們學習了圓錐的體積計算:V= Sh= πr2h。

  在應用圓錐體積公式時我們要記住乘,還要留意單位名稱是否統(tǒng)一!

  六、結束。

  【課堂教學設想】

  1、學生看完視頻對于實驗成功的必要條件“等底等高”、“每次倒?jié)M”等有了一定的認識,且會躍躍欲試,為課堂的`實驗操作做了鋪墊。

  2、課堂上組織學生分小組實驗:

  圓柱與圓錐等底不等高時,實驗結果會怎樣?

  圓柱與圓錐等高不等底時,實驗結果會怎樣?

  “圓錐的體積是圓柱體積的”這一關系存在的條件是什么?

  圓錐與圓柱體積相等時,如果高相等,底面積有什么關系?如果底面積相等,高有什么關系?

  3、課堂檢測,促進知識內化。

  【教學反思】

  本節(jié)課教學目標定位為學生初步掌握圓錐體積的計算公式,并能運用公式正確地計算圓錐的體積,所以設計時力求每個環(huán)節(jié)都為教學目標服務。

  課前觀看視頻。首先回憶圓柱體積公式,通過圓柱與圓錐的底面都是圓的,讓學生猜測圓柱與圓錐體積之間的關系,然后通過兩次的實驗驗證圓錐體體積的計算方法,實現(xiàn)了一個“做數(shù)學”的過程。通過課外的視頻學習,能加深學生對圖形特征以及圖形之間的內在聯(lián)系的認識,進一步領會轉化的數(shù)學思想。

  課內通過小組實驗操作進一步驗證“圓錐的體積是圓柱體積的”這一關系存在的必要條件是等底等高,從而推導出圓錐的體積計算公式:V= Sh= πr2h,從而培養(yǎng)了學生構建知識系統(tǒng)的能力和知識遷移及綜合整理的能力。課堂上不再重復學習微課程中的知識,把時間花在完成練習上,通過不同的練習檢測學生的掌握情況,對暴露的問題進行有針對性的輔導,從而提高教學效率。

  圓錐的體積優(yōu)秀教學設計 3

  【教學過程】

  一、復習

  1、圓柱的體積公式是什么?用字母怎樣表示?

  2、求下列各圓柱的體積。(口答)

 。1)底面積是5平方厘米,高是6厘米。

 。2)底面半徑4分米,高是10分米。

 。3)底面直徑2米,高是3米。

  師:剛才我們復習了圓柱的體積公式并應用這個公式計算出了圓柱的體積,那么圓柱和圓錐有什么關系呢?這節(jié)課我們就來研究圓錐的體積。

  師:圓錐的底面是什么形狀的?什么是圓錐的高?請拿出一個同學們自己做的圓錐講一講。

  生:圓錐的底面是圓形的。

  生:從圓錐的頂點到底面圓心的距離是圓錐的高。

  師:你能上來指出這個圓錐的高嗎?

  師:很好,因為圓錐的高我們一般無法到里面去測量,所以常常這樣量出它的高。

  師:你們看到過哪些物體是圓錐形狀的?

  師:對。在生活中有很多圓錐形的物體。

  師:剛才我們已經認識了圓錐,F(xiàn)在我們再來研究圓錐的體積。請同學們拿出一對等底等高圓錐和圓柱。想一想用什么辦法能研究出等地等高的圓錐和圓柱的體積之間存在什么關系,然后把你的想法放在小組中交流,再分工進行實驗。下面我們采用實驗的方法來推導圓錐體的體積公式(邊說邊演示),先在圓錐內裝滿水,然后把水倒入圓柱內,看看幾次可將圓柱倒?jié)M,F(xiàn)在我們分小組做實驗,大家邊做邊討論實驗要求,如有困難可以看書第23頁。

  出示小黑板:

  1、圓錐的體積和同它等底等高的圓柱的體積有什么關系?

  2、圓錐的體積怎么算?體積公式是怎樣的?

  學生分組做實驗,老師巡回指導。

  師:我們先來回答第一個問題。在你們做實驗用的圓錐的體積和同它等底等高的圓柱的體積有什么關系?

  生:圓柱的體積是圓錐體積的3倍。

  生:圓錐的體積是同它等底等高的圓柱體權的1/3。

  板書:圓錐的體積等于同它等底等高的圓柱體積的1/3。

  師:得出這個結論的同學請舉手。(略)你們是怎么得出這個結論的呢?

  生:我們先在圓錐內裝滿沙,然后倒人圓柱內。這樣倒了三次,正好將圓柱裝滿。所以,圓錐的體積是同它等底等高的圓柱體積的1/3。

  師:說得很好。那么圓錐的體積怎么算呢?

  生:可以先算出與它等底等高的圓柱的體積,用底面積乘以高,再除以3,就是圓錐的體積。

  師:誰能說說圓錐的體積公式。

  生:圓錐的體積公式是v=1/3sh。

  師:老師也做了一個同樣實驗請同學認真看一看。想一想有什么話對老師說嗎?請看電視。

  師:請大家把書翻到第42頁,將你認為重要的`字、詞、句圈圈劃劃,并說說理由。

  生:我認為"圓錐的體積v等于和它等底等高的圓柱體積的三分之一。"這句話很重要。

  生:我認為這句話中"等底等高"和"三分之一"這幾個字特別重要。

  師:大家說得很對,那么為什么這幾個字特別重要?如果底和高不相等的圓錐和圓柱有沒有三分之一這個關系呢?我們也來做個實驗。大家還有兩個是等底不等高的圓錐和圓柱,請同學們用剛才做實驗的方法試試看。

  師:等底不等高或者等高不等底的圓錐體積不是圓柱體積的1/3。師:可見圓錐的體積等于圓柱體積的三分之一的關鍵條件是等地等高。

  師:下面我們就根據(jù)"等底等高的圓錐體積是圓柱體積的1/3"這個關系來解決下列問題。

  例l :一個圓錐形零件,底面積是19平方厘米,高是12厘米。這個零件的體積是多少?

  (兩名學生板演,老師巡視)

  師:這位同學做的對不對?

  生:對!

  師:和他做的一-樣的同學請舉手。(絕大多數(shù)同學舉手)

  師:那么這位同學做錯在哪里呢?(指那位做錯的同學做的)

  生:他漏寫了1/3。用底面積乘以高算出來的是圓柱的體積,圓錐的體積還要再乘以1/3。

  師:對了。剛才我們通過實驗知道了圓錐的體積等于同它等底等高的圓柱體積的三分之一,從而推導出圓錐的體積計算公式,即v=1/3sh。我們在用這個公式計算圓錐的體積時,要特別注意,1/3不能漏掉。

  三、鞏固練習

 。1)、一個圓錐的底面積是25平方分米,高是9分米,它體積是多少?

  (2)、求圓錐的體積(看圖)

 。3)、一個圓錐的底面直徑是20厘米,高是8厘米,它體積是多少?(圖)師:三題都填對了。接下來我要考考你們,看是不是掌握了今天的知識。

  2、填空。

  (1) 一個圓錐的體積是8立方分米,底面積是2平方分米,高( )分米、。(2)圓錐形的容器高12厘米,容器中盛滿水,如將水全部倒入等底的圓柱形的器中,水面高是( )厘米。

  3、選擇

  (1) 兩個體積相等的等底的圓柱和圓錐,圓錐的高一定是圓柱高的( ) 。

  (2) 把一段圓柱形的木棒削成一個最大的圓錐,削去部分的體積是圓錐體積的( )。

  四、課堂總結

  師:今天,我們學習了什么內容?怎樣計算圓錐的體積?

  對,這節(jié)課我們認識了圓錐,并推導出了圓錐的體積計算公式;厝ヒ院,先回憶一下今天學過的內容,想一想,在運用v=1/3sh這個公式算圓錐體積時,要特別注意什么。

  五、布置作業(yè)

  課外作業(yè):有一個高9厘米,底面積是20平方厘米的圓柱內裝滿水,用一個與它等底等高的圓錐擠壓,最多能擠出多少水?圓柱內還剩多少水?(邊做實驗邊討論)

  【教學目的】

  1、使學生理解和掌握求圓錐體積的計算公式,并能正確求出圓錐的體積。

  2、培養(yǎng)學生初步的空間觀念、邏輯思維能力、動手操作能力。

  3、向學生滲透知識間"相互轉化"的辯證唯物主義思想,在聯(lián)系實際中對學生進行學習目的方面的思想教育。

  【教學重點】

  圓錐的體積計算。

  【教學難點】

  圓錐的體積公式推導。

  【教學關鍵】

  圓錐的體積是與它等底等高的圓柱體積的三分之一。

  【教具準備】

  多媒體、等底等高的圓柱和圓錐空心實物各一個,水若干。

  【學具準備】

  空心圓錐和圓柱實物各一個,沙土若干。

  圓錐的體積優(yōu)秀教學設計 4

  教學內容:

  冀教版小學數(shù)學六年級下冊第40~42頁。

  教學目標:

  1、知識與技能:知道圓錐的各部分名稱,探索并掌握圓錐的體積公式,會用公式計算圓錐的體積。

  2、過程與方法:通過觀察、討論、實驗等活動,經歷認識圓錐和探索圓錐體積計算公式的過程

  3、情感態(tài)度與價值觀:積極參加數(shù)學活動,了解圓錐和圓柱之間的聯(lián)系獲得探索數(shù)學公式的活動經驗。

  教學重難點:

  教學重點:了解圓錐的特點,探索并理解圓錐體積的計算公式會用公式計算圓錐的體積。

  教學難點:理解圓錐的高和圓錐體積公式中“Sh”表示的實際意義。

  教具學具:

  1、等底等高的圓柱和圓錐型容器,一些沙子。

  2、多媒體。

  教學流程:

  一、炫我兩分鐘

  主持學生指名叫學生回答下列問題:

  1.圓柱有幾個面?各有什么特點?

  2.怎樣計算圓柱的體積?

  學生回答問題。

  【設計意圖:通過學生主持炫我兩分鐘,使學生復習以前學過的相關知識,在輕松愉快的氛圍中自然引入本節(jié)所學知識!

  二、創(chuàng)設情境

  1、教師先出示一個圓柱形容器,提問:如果想知道這個容器的容積,怎么辦?

  2、出示問題情境:

  最近老師家準備裝修,準備了一堆沙子,可是老師遇到了一個難題,大家和我一起解決好嗎?(出示沙堆圖片),這堆沙子的底面半徑是2米,高是1.5米,工人告訴我要用6立方米沙子,我不知道我準備的這些沙子夠不夠?怎樣計算這堆沙子的體積呢?今天我們就一起來研究一下圓錐體積的計算方法。(板書課題)

  【設計意圖:在談話、創(chuàng)設問題情境的過程中,引起學生的認知沖突,從而產生求知欲望。】

  三、探究新知

  嘗試小研究一(課前):了解圓錐的特點

  1.觀察圓錐形的物體或圖片,它們有哪些特點?

  我的發(fā)現(xiàn):

  2.圓錐由1個( )面和1個( )面2個面組成,圓錐的底面是一個( ) ,圓錐的側面是一個( ) 。

  3.從圓錐頂點到底面圓心的距離是圓錐的( ),用字母( )表示。

  4.怎樣計算圓錐的體積?

  我的猜想:( )

  嘗試小研究二(課上):推導圓錐體積的計算公式

  1、引導學生借助圓柱,探討圓錐的體積公式。

  ①、猜:圓錐的體積怎樣計算呢?大膽猜一下。真的是這樣嗎?

 、、是怎樣推導的呢?你有什么想法?

  下面我們就用實驗的方法來推導圓椎的體積公式。

  老師提供了實驗用具,拿出來看看:(有圓柱,有圓椎,有沙子,有水)都有嗎?

  2、用實驗的方法,推導圓錐的體積公式。

  ①、引導學生觀察用來實驗的圓錐、圓柱的特點。

  其實老師已經準備好了材料,在你們的小組長手中,看一看,比一比,有什么特點嗎?(學生發(fā)現(xiàn)等底等高)(師板書等底等高)

 、、學生實驗:

  你想怎么實驗?(小組可以議一議)(老師指導:倒一下)

  請大家以小組為單位進行實驗,在實驗中,注意作好記錄,思考三個問題:(大屏幕出示這三個問題)(學生讀一讀思考題)

  A:你們小組是怎樣進行實驗的?

  B:通過實驗,你們發(fā)現(xiàn)了所給的圓錐、圓柱在體積上有什么關系?

  C:根據(jù)這個關系怎樣求出圓錐的體積?

  (教師指導:為了讓實驗更準確些,可以用尺子將沙子刮平再倒入)

  ③、學生交流匯報,完成計算公式的推導:

  小組匯報,師板書。

  圓錐的體積等于和它等底等高的圓柱體積的三分之一。

  V=1/3Sh

  【設計意圖:通過小組合作,觀察、討論、實驗等活動,經歷認識圓錐和探索圓錐體積計算公式的`過程,知道圓錐的各部分名稱,探索并掌握圓錐的體積公式,會用公式計算圓錐的體積!

  四、解決問題,鞏固練習

  (一)運用這個公式解決老師提出的問題,幫助老師解決問題。

  1、 學生試做。

  2、對子同學交流。

  3、小組交流。

  4、展示匯報。

 。ǘ┡袛啵 用手勢來回答

  1、圓柱的體積是圓錐體積的3倍。( )

  2、一個圓柱,底面積是12平方分米,高是5分米,它的體積是20立方分米( )

  3、把一個圓柱木塊削成一個最大的圓錐,削去的體積是圓柱體積的三分之二。( )

 。ㄈ┩瓿山滩牡42頁“試一試”。

  【設計意圖:通過練習,加深對本節(jié)課知識的了解,使學生更好的掌握本節(jié)課所學知識,并提高學生應用所學知識解決實際問題的能力!

  五、盤點收獲

  通過這節(jié)課的學習,你有什么收獲?你還想了解哪些知識

  【設計意圖:引導學生進行小結,培養(yǎng)學生的探究欲望,有利于知識的積累和自主學習能力的提高!

  六、拓展延伸

  教材第42頁“練一練”第4題。

  【設計意圖: 把課上的知識延伸到課外,使學生進一步感受數(shù)學于生活并應用于生活。】

  板書設計: 圓錐和圓錐的體積

  圓錐的體積等于和它等底等高的圓柱體積的三分之一。

  圓錐的體積=底面積×高×1/3

  V=1/3Sh

  5 O

  圓錐的體積優(yōu)秀教學設計 5

  教學目標

  1.理解求圓錐體積的計算公式。

  2.會運用公式計算圓錐的體積。

  3.培養(yǎng)同學們初步的空間觀念和思維能力;讓同學們認識轉化的思考方法。

  教學重點

  圓錐體體積計算公式的推導過程。

  教學難點

  正確理解圓錐體積計算公式。

  教學過程

  一、鋪墊孕伏

  1.提問:

 。1)圓柱的體積公式是什么?

  (2)投影出示圓錐體的圖形,學生指圖說出圓錐的底面、側面和高。

  2.導入:同學們,前面我們已經認識了圓錐,掌握了它的特征,那么圓錐的體積怎樣計算呢?這節(jié)課我們就來研究這個問題。(板書:圓錐的體積)

  二、探究新知

 。ㄒ唬┲笇骄繄A錐體積的計算公式

  1.教師談話:

  下面我們利用實驗的.方法來探究圓錐體積的計算方法。老師給每組同學都準備了兩個圓錐體容器,兩個圓柱體容器和一些沙土。實驗時,先往圓柱體(或圓錐體)容器里裝滿沙土(用直尺將多余的沙土刮掉),倒人圓錐體(或圓柱體)容器里。倒的時候要注意,把兩個容器比一比、量一量,看它們之間有什么關系,并想一想,通過實驗你發(fā)現(xiàn)了什么?

  2.學生分組實驗。

  學生匯報實驗結果:

 、賵A柱和圓錐的底面積相等,高不相等,圓錐體容器裝滿沙土往圓柱體容器里倒,倒了一次,又倒了一些,才裝滿。

 、趫A柱和圓錐的底面積不相等,高相等,圓錐體容器裝滿沙土往圓柱體容器里倒,倒了兩次,又倒了一些,才裝滿。

 、蹐A柱和圓錐的底面積相等,高相等,圓錐體容器裝滿沙土往圓柱體容器里倒,倒了三次,正好裝滿。

  4.引導學生發(fā)現(xiàn):

  圓柱體的體積等于和它等底等高的圓錐體體積的3倍或圓錐的體積是和它等底等高圓柱體積的 。

  板書:

  5.推導圓錐的體積公式:用字母表示圓錐的體積公式.板書: 。

  6.思考:要求圓錐的體積,必須知道哪兩個條件?

  7.反饋練習

  圓錐的底面積是5,高是3,體積是( )。

  圓錐的底面積是10,高是9,體積是( )。

 。ǘ┧阋凰

  學生獨立計算,集體訂正。

  說說解題方法。

  三、全課小結

  通過本節(jié)的學習,你學到了什么知識?(從兩個方面談:圓錐體體積公式的推導方法和公式的應用)

  圓錐的體積優(yōu)秀教學設計 6

  【教學內容】

  圓錐的體積(1)(教材第33頁例2)。

  【教學目標】

  1、參與實驗,從而推導出圓錐體積的計算公式,會運用圓錐的體積公式計算圓錐的體積。

  2、培養(yǎng)學生初步的空間觀念,讓學生經歷圓錐體積公式的推導過程,體驗觀察、比較、分析、總結、歸納的學習方法。

  【重點難點】

  圓錐體積公式的推導過程。

  【教學準備】

  同樣的圓柱形容器若干,與圓柱等底等高的圓錐形容器,與圓柱不等底等高的圓錐形容器若干,沙子和水。

  【情景導入】

  1、復習舊知,作出鋪墊。

 。1)教師用電腦出示一個透明的圓錐。

  教師:同學們仔細觀察,圓錐有哪些主要特征呢?

 。2)復習高的概念。

  A、什么叫做圓錐的高?

  B、請一名同學上來指出用橡皮泥制作的圓錐模型的高。(提供刀片、橡皮泥模型等,幫助學生進行操作)

  2、創(chuàng)設情境,引發(fā)猜想。

  (1)電腦呈現(xiàn)出動畫情境(伴圖配音)。

  夏天,森林里悶熱極了,小動物們都熱得透不過氣來。一只小白兔去“動物超市”購物,它在冷飲專柜熊伯伯那兒買了一個圓柱形的雪糕。這一切都被躲在一旁的狐貍看見了,它也去熊伯伯的專柜里買了一個圓錐形的雪糕。小白兔剛張開嘴,滿頭大汗的狐貍拿著一個圓錐形的雪糕一溜煙跑了過來。(動畫中圓柱形和圓錐形的雪糕是等底等高的)

 。2)引導學生圍繞問題展開討論。

  問題一:狐貍貪婪地問:“小白兔,用我手中的雪糕跟你換一個怎么樣?”(如果這時小白兔和狐貍換了雪糕,你覺得小白兔有沒有上當?)

  問題二:(動畫演示)狐貍手上又多了一個同樣大小的圓錐形雪糕。(小白兔這時和狐貍換雪糕,你覺得公平嗎?)

  問題三:如果你是森林中的.小白兔,狐貍手中的圓錐形雪糕有幾個時,你才肯與它交換?(把你的想法跟小組交流一下,再向全班同學匯報)

  過渡:小白兔究竟跟狐貍怎樣交換才合理呢?學習了“圓錐的體積”后,大家就會弄明白這個問題。

  【新課講授】

  自主探究,操作實驗

  下面,請同學們利用老師提供的實驗材料分組操作,自己發(fā)現(xiàn)屏幕上的圓柱與圓錐體積之間的關系,解決電腦博士給我們提出的問題。

  出示思考題:通過實驗,你們發(fā)現(xiàn)圓柱的體積和圓錐的體積之間有什么關系?你們的小組是怎樣進行實驗的?

  (1)小組實驗。

  A、學生分6組操作實驗,教師巡回指導。(其中4個小組的實驗材料:沙子、水、水槽、量杯、等底等高的圓柱形和圓錐形容器各一個;另外2個小組的實驗材料:沙子,既不等底也不等高的圓柱形和圓錐形容器各一個,體積有8倍關系的也有5倍關系的。)

  B、同組的學生做完實驗后,進行交流,并把實驗結果寫在黑板上。

 。2)全班交流。

 、俳M織收集信息。

  學生匯報時可能會出現(xiàn)下面幾種情況,教師把這些信息逐一呈現(xiàn)在黑板上:

  A、圓柱的體積正好等于圓錐體積的3倍。

  B、圓柱的體積不是圓錐體積的3倍。

  c、圓柱的體積正好等于圓錐體積的8倍。

  D、圓柱的體積正好等于圓錐體積的5倍。

  E、圓柱的體積是等底等高圓錐體積的3倍。

  f、圓錐的體積是等底等高圓柱體積的。

  ②引導整理信息。指導學生仔細觀察,把黑板上的信息分類整理。(根據(jù)學生反饋的實際情況靈活進行)

 、蹍⑴c處理信息。圍繞3倍關系情況討論:請這幾個小組同學說出他們是怎樣通過實驗得出這一結論的?哪個小組得出的結論更科學合理一些?

  圓錐的體積是等底等高圓柱體積的。(突出等底等高,并請學生拿出實驗用的器材,自己比劃、驗證這個結論)引導學生自主修正另外兩個結論。

 。3)誘導反思。為什么有兩個實驗小組的結果不是3倍的關系呢?

 。4)推導公式。嘗試運用信息推導圓錐的體積公式。這里的sh表示什么?為什么要乘?要求圓錐體積需要知道幾個條件?

 。5)解決問題。童話故事中的小白兔和狐貍怎樣交換才公平合理呢?它需要什么前提條件?(動畫演示:等底等高,之后播放狐貍拿著圓錐形雪糕離去的畫面)

  【課堂作業(yè)】

  完成教材第34頁“做一做”第1題。

  先組織學生在練習本上算一算,然后指名匯報。

  答案:13×19×12=76(cm3)

  【課堂小結】

  教師:請你說說知道哪些條件就可以求圓錐的體積?學生自由交流。

  【課后作業(yè)】

  1、完成練習冊中本課時的練習。

  2、教材第35頁第3、4、5題。

  答案:第3題:提示:可以利用直尺、軟尺等工具測量出圓錐形實物的底面直徑(或者底面周長)和高,再根據(jù)V圓錐=1/3sh計算出該物體的體積。

  第4題:(1)25、12(2)423、9

  第5題:(1)×(2)√(3)×

  圓錐的體積優(yōu)秀教學設計 7

  教學目標

  1.在操作和探究中理解并掌握圓錐的體積計算公式。

  2.引導學生探究、發(fā)現(xiàn),培養(yǎng)學生的觀察、歸納等能力。

  3.在實驗中,培養(yǎng)學生的數(shù)學興趣,發(fā)展學生的空間觀念。

  教學重點

  圓錐體積的計算公式的推導過程。

  教學難點

  圓錐體積計算公式的理解。

  教學過程

  一、情景鋪墊,引入課題

  教師出示畫面,畫面中兩個小孩正在商店里買蛋糕,蛋糕有圓柱形和圓錐形兩種。圓柱形蛋糕的標簽上寫著底面積16cm2,高20cm,單價:40元/個;圓錐形的蛋糕標簽上寫著底面積16 cm2,高60 cm,單價:40元/個。

  出示問題:到底選哪種蛋糕劃算呢?

  教師:圖上的兩個小朋友在做什么?他們遇到什么困難了?他們應該選哪種蛋糕劃算呢?誰能幫他們解決這個問題?

  學生明白首先要求出圓錐形蛋糕的體積。

  教師:怎樣計算圓錐的體積?這節(jié)課我們一起研究圓錐體積的計算方法。

  揭示課題。板書課題:圓錐的體積

  二、自主探究,感悟新知

  1.提出猜想,大膽質疑

  教師:誰來猜猜圓錐的體積怎么算?

  2.分組合作,動手實驗

  教師:圓錐的體積和圓柱的體積之間究竟有沒有關系呢?如果有關系的話,它們之間又是一種什么關系?通過什么辦法才能找到它們之間的關系呢?帶著這些問題,請同學們分組研究,通過實驗尋找答案。

  教師布置任務并提出要求。

  每個小組的桌上都有準備好的器材:等底等高空心的或實心的圓柱和圓錐、河沙或水、水槽等不同的器材,以及一張可供選用的實驗報告單。四人小組的成員分工合作,利用提供的器材共同想辦法解決問題,找出圓錐體積的計算方法。并可根據(jù)小組研究方法填寫實驗報告單。

  學生小組合作探究,教師巡視指導,參與學生的活動。

  3.教師用展示實驗報告單

  教師:你們采用了哪些方法研究等底等高的圓柱和圓錐之間的關系?通過實驗,你們發(fā)現(xiàn)了什么?

  方案一:用空心的圓錐裝滿水,再把水倒在與這個圓錐等底等高的空心圓柱形容器中,倒了三次,剛好裝滿圓柱形容器,因為圓柱的體積=底面積×高,所以圓錐的體積=1/3×圓柱的體積。

  方案二:方法與一小組的方法基本一樣,只不過裝的是河沙。我們的結論和一小組一樣,圓錐的.體積也是這個等底等高圓柱體積的三分之一。

  教師:二個小組采用的實驗方法不一樣,得出的結論都一樣。老師為你們的探索精神感到驕傲。

  教師把學生們的實驗過程演示一遍,讓學生再經歷一次圓錐體積的探究過程。

  4.公式推導

  教師:圓柱的體積怎樣計算?圓錐的體積又怎樣計算?

  教師引導學生理解只要求出與這個圓錐等底等高的圓柱的體積,再乘以三分之一,就得到圓錐的體積。

  板書:圓柱的體積=底面積×高

  V=S×h

  ↓〖4↓〖6↓

  圓錐的體積=1/3×底面積×高

  V=1/3×S×h

  教師:圓柱的體積用字母V表示,圓錐的體積也用字母V表示。怎樣用字母表示圓錐的體積公式?

  抽學生回答,教師板書:V=1/3Sh

  教師引導學生理解公式,弄清公式中的S表示什么,h表示什么。

  要求學生閱讀教科書第39頁和第40頁例1前的內容。勾畫出你認為重要的語句,并說說理由。

  5.運用所學知識解決問題

  教學例1。

  一個鉛錘高6 cm,底面半徑4 cm。這個鉛錘的體積是多少立方厘米?

  學生讀題,找出題中的條件和問題。

  引導學生弄清鉛錘的形狀是圓錐形。

  學生獨立解答。抽學生上臺展示解答情況并說出思考過程。

  三、拓展應用,鞏固新知

  1.教科書第42頁第1題

  學生獨立解答,集體訂正。

  2.填一填

 。1)圓柱的體積字母表達式是(),圓錐的體積字母表達式是()。

  (2)等底等高的圓柱的體積是圓錐體積的()倍。

  抽生回答,熟悉圓錐的體積計算公式。

  3.把下列表格補充完整

  形狀 底面積S(m2) 高h(m) 體積V(m3)

  圓錐 15 9

  圓柱 16 0.6

  學生在解答時,教師巡視指導。

  4.教科書第42頁練習九第2題

  分組解答,抽生板算。教師帶領學生集體訂正。

  5.應用公式解決實際問題

  教師:現(xiàn)在我們再來幫助這兩個同學解決他們的難題。

  要求學生獨立解答新課前買蛋糕的問題。

  抽學生說出計算的結果。明白兩個蛋糕的體積一樣大,因此買兩種形狀的蛋糕都可以。

  四、課堂總結

  教師:這節(jié)課的學習中,你都有哪些收獲?有關圓錐體積的知識還有哪些不清楚的?

  圓錐的體積優(yōu)秀教學設計 8

  教學目標

  1、知識目標:使學生理解和掌握求圓錐體積的計算公式,并能正確求出圓錐的體積。、

  2、能力目標:培養(yǎng)學生初步的空間觀念,動手操作能力和邏輯思維能力。

  3、情感目標:向學生滲透知識間可以相互轉化的辯證唯物主義思想,讓學生學習將新知識轉化為原有知識的學習方法、

  教學重難點

  教學重點:圓錐的體積計算。

  教學難點:圓錐的體積計算公式的推導。

  教學工具

  ppt課件。

  教學過程

  一、導入新課

  1、出示鉛錘

  師:同學們,我們剛認識了圓錐,在學習“圓錐的認識”時認識了這個物體—鉛錘。鉛錘的外形是圓錐形的,這個鉛錘所占空間的大小叫做這個鉛錘的體積。

  問:你們有沒有辦法來測量這個鉛錘的體積?

  生:排水法

  師:同學們回答很積極,想到了之前學過的排水法,那咱們對這個方法進行一下評價(學生想到了,并不是所有的圓錐都可以用排水法來測量體積。比如一些龐大的圓錐形物體)

  2、PPT出示圓錐形麥堆和圓錐形的高大的建筑物

  像這種比較大的圓錐形的物體就不適合用排水法測量體積,所以我們需要找到一個解決此類問題的普遍的方法。

  出示課題圓錐的體積

  二、探究新知

  1、回憶

  師:我們學過那些形狀的物體的體積的計算方法

  生:長方體正方體圓柱體(學生邊說,師邊PPT出示圖片)

  師:我們在推導圓柱體體積的計算方法的時候是將圓柱體轉化長方體或者正方體,轉化前后體積不變,你覺得圓錐體和哪種形狀的物體有關系呢?

  生:圓柱體

  師:為什么?

  生:圓錐體和圓柱體都有圓形的底面

  2、猜測

  師:既然大家都認為圓錐體和圓柱體由一定的關系,你能大膽猜測一下,圓錐體和圓柱體的體積之間有怎樣的關系么?

  (學生猜測,找學生說說猜測的結果)

  3、驗證

  師:有了猜測我們就通過實驗來驗證咱們的猜測(利用學具進行驗證,一邊實驗,一邊填寫實驗記錄單)

  (找學生讀一讀表格中需要填寫的內容,并提問,比較圓柱和圓錐的時候,是比較的什么?為學生的.實驗操作做一個引領。操作過程6—8分鐘)

  4、實驗后討論,并分組匯報實驗結果

 。ㄔ趯嶒炛形以O置了兩次不同的實驗,第一次是等底等高的圓柱和圓錐,第二次是等底不等高的圓柱和圓錐,以便對比得出結論,并不是所有的圓柱和圓錐都符合3倍關系,是有前提條件的)

  5、結論

  通過操作發(fā)現(xiàn):圓錐的體積是同它等底等高的圓柱體積的1/3

  板書:圓柱的體積=底面積×高

  圓錐的體積=底面積×高÷3

  三、運用知識

  1、PPT出示填空和判斷

  師:我們學會了求圓錐的體積的計算方法,現(xiàn)在我們利用所學知識來解決生活中的實際問題。

  2、PPT出示例題3

  (學生計算,計算過程中巡視學生解題情況,挑選兩種不同的解題方法展示)

  四、拓展

  PPT出示拓展題

  五、總結,談收獲

  通過本節(jié)課的學習,你有哪些收獲?

  圓錐的體積優(yōu)秀教學設計 9

  教學內容:

  教科書第20~21頁例5及相應的 試一試,練一練和練習四的第1~3題。

  教學目標:

  1.組織學生參與實驗,從而推導出圓錐體積的計算公式。

  2.會運用圓錐的體積計算公式計算圓錐的體積。

  3.培養(yǎng)學生觀察、比較、分析、綜合的能力以及初步的空間觀念。

  4.以小組形式參與學習過程,培養(yǎng)學生的合作意識。

  5.滲透轉化的數(shù)學思想。

  教學重點:

  理解和掌握圓錐體積的計算公式。

  教學難點:

  理解圓柱和圓錐等底等高時體積間的倍數(shù)關系。

  教學資源:

  等底等高的'圓柱和圓錐容器一套,一些沙或米等。

  教學過程:

  一、聯(lián)系舊知,設疑激趣,導入新課。

  1.我們已經知道了哪些立體圖形體積的求法?(學生回答時老師出示相應的教具---長方體,正方體圓柱體,然后板書相應的計算公式。)

  2.我們是用什么方法推出圓柱體積的計算公式的?(是把圓柱體轉化為長方體來推導的。板書:轉化)

  3.(出示教具)大家覺得這個圓錐與哪個立體圖形的關系最近呢?(老師比較學生指出的圓柱與圓錐的底和高,引導學生發(fā)現(xiàn)這個圓柱與圓錐等底等高。)

  4.大家覺得我們今天要研究的圓錐的體積可能轉化為什么圖形來研究比較簡單呢?能說說自己的理由嗎?

  5.它們的體積之間到底有什么關系呢?

  二、實驗操作、推導圓錐體積計算公式。

  1.課件出示例5。

 。1)通過演示使學生知道什么叫等底等高。

 。2)讓學生猜想:圖中的圓錐和圓柱等底等高,你能猜想一下它們體積之間有怎樣的關系?

 。3)實驗操作,發(fā)現(xiàn)規(guī)律。

 。ㄓ脤W具演示)在空圓錐里裝滿黃沙,然后倒入空圓柱里,看看倒幾次正好裝滿。(用有色水演示也可)從倒的次數(shù)看,你發(fā)現(xiàn)圓錐體積與等底等高的圓柱體積之間有怎樣的關系?得出圓錐的體積是與它等底等高的圓柱體體積的 。

  老師把圓柱里的黃沙倒進圓錐,問:把圓柱內的沙往圓錐內倒三次倒光,你又發(fā)現(xiàn)什么規(guī)律?

  (4)是不是所有的圓柱和圓錐都有這樣的關系?教師可出示不等底不等高的圓錐、圓柱,讓學生通過觀察實驗,得出只有等底等高的圓錐才是圓柱體積的 。

  2.教師課件演示

  3.學生討論實驗情況,匯報實驗結果。

  4.啟發(fā)引導推導出計算公式并用字母表示。

  圓錐的體積=等底等高的圓柱的體積 1/3=底面積高1/3

  用字母表示:V= 1/3Sh

  小結:要求圓錐體積必須知道哪些條件,公式中的底面積乘以高,求的是什么?為什么要乘以1/3 ?

  5.教學試一試

 。1)出示題目

  (2)審題后可讓學生根據(jù)圓錐體積計算公式自己試做。

 。3)批改講評。注意些什么問題。

  三、發(fā)散練習、鞏固推展

  1.做練一練第1.2題。

  指名一人板演,其余學生做在練習本上。集體訂正,強調要乘以1/3 。

  2.做練習四第1.2題。

  學生做在課本上。之后學生反饋。錯的要求說明理由。

  四、小結

  這節(jié)課你學習了什么內容?圓錐有怎樣的特征?圓錐的體積怎樣計算?為什么?

  學生交流

  五、作業(yè)

  練習四第3題。

  圓錐的體積優(yōu)秀教學設計 10

  教學目標

  1、推導出圓錐體積的計算公式。

  2、會運用圓錐的體積公式計算圓錐的體積。

  重點難點

  圓錐體積公式的推導過程。

  教學過程

  一、板書課題

  師:同學們,今天我們來學習“圓錐的體積”(板書課題)。

  二、出示目標

  理解并掌握圓錐的體積計算公式,并能運用公式解決實際問題。

  三、自學指導

  認真看課本第33頁到第34頁的`例2和例3,邊看書,邊實驗,理解圓錐的體積計算方法,并將例3補充完整。想:

  1、圓錐的體積與圓柱的體積有什么關系?

  2、圓錐的體積計算公式是什么?用字母如何表示?

  5分鐘后,比誰能正確地回答思考題并能做對檢測題!

  檢測題

  完成課本第34頁“做一做”第1、2題。

  小組合作,校正答案

  后教

  口答

  一個體積是1413立方分米的鐵塊,可以制造成多少個底面半徑是3分米、高是5分米的圓錐形零件?

  小組內互相說。

  當堂訓練

  1、必做題:

  課本第35頁第5、6、7題。(做在作業(yè)本上)

  2、選做題:

  有一個近似圓錐形的沙堆,底面周長是12.56米,高1.2米。把這些沙鋪在一個長4米、寬3米的長方形沙坑里,可以鋪多厚?(得數(shù)保留兩位小數(shù))

【圓錐的體積優(yōu)秀教學設計】相關文章:

《圓錐的體積》教學設計04-17

圓錐的體積教學設計03-02

[精華]圓錐的體積教學設計11-24

小學數(shù)學《圓錐的體積》優(yōu)秀教學設計(精選10篇)03-09

六年級《圓錐體積》教學設計07-02

圓柱的體積教學設計09-01

《圓柱的體積》教學設計06-26

圓錐認識的教學設計推薦02-23

《圓柱和圓錐的認識》的教學設計04-20

長方體的體積教學設計02-02