分數(shù)的基本性質教學設計
作為一位兢兢業(yè)業(yè)的人民教師,常常要寫一份優(yōu)秀的教學設計,教學設計是連接基礎理論與實踐的橋梁,對于教學理論與實踐的緊密結合具有溝通作用。你知道什么樣的教學設計才能切實有效地幫助到我們嗎?下面是小編精心整理的分數(shù)的基本性質教學設計,僅供參考,大家一起來看看吧。
分數(shù)的基本性質教學設計1
教學內容:人教版小學數(shù)學第十冊第107頁至108頁。
教學目標:
1、知識目標:通過教學使學生理解和掌握分數(shù)的基本性質,能利用它改變分數(shù)的分子和分母,而使分數(shù)的大小不變。
2、能力目標:培養(yǎng)學生的觀察能力、動手操作能力和分析概括能力等。
3、情感目標:讓學生在學習過程中養(yǎng)成互相幫助、團結協(xié)作的良好品德。
教學準備:長方形紙片、彩筆、各種分數(shù)卡片。
教學過程
一、創(chuàng)設情境,激發(fā)興趣
1.課件示故事。同學們,今天是快樂的,老師祝愿同學們節(jié)日快樂!在我們歡慶自己的節(jié)日時,花果山圣地也早已是一派節(jié)日喜慶的氣氛。
【六一節(jié)到了,猴山上張燈結彩,小猴們享受著節(jié)日的快樂。猴王給小猴們做了三塊他們愛吃的餅。它先把第一塊餅平均切成四塊,分給第一只小猴貝貝一塊。第二只小猴佳佳見到說:“太小了,我要兩塊!焙锿蹙桶训诙䦃K餅平均切成八塊,分給第二只小猴兩塊。第三只小猴丁丁急了,它搶著說:“我要三塊,我要三塊。”于是,猴王又把第三塊餅平均切成十二塊,分給第三只小猴丁丁三塊。貝貝、佳佳見了,連忙說:“猴爺爺,不公平,不公平,我們要分得和丁丁的同樣多!薄
“同學們,猴王真的分得不公平嗎?”
二、動手操作、導入新課
同學們,這個故事告訴了我們什么?猜想一下猴王分得公平嗎?為什么公平?我們平常怎樣去做?讓我們也來分分看。請每組拿出課前準備的三張長方形紙片,共同來分一分,并完成操作報告(課件出示操作報告)。請小組長分工一下,明確記錄的同學。
任選一小組的同學臺前展示實驗報告,并匯報結論。
教師根據(jù)學生匯報板書:14=28=312
2.組織討論。
。1)通過操作我們發(fā)現(xiàn)三只猴子分得的餅同樣多,表示它們分得餅的分數(shù)是相等關系。那么,這三個分數(shù)什么變了,什么沒有變?讓學生小組討論后答出:它們平均分的份數(shù)和表示的份數(shù)也就是分數(shù)的分子和分母變化了,但分數(shù)的大小不變。
(2)猴王把三塊大小一樣的餅分給小猴子一部分后,剩下的部分大小相等嗎?你還能說出一組相等的分數(shù)嗎?學生通過觀察演示得出結論教師板書:34=68=912。
3.引入新課:黑板上二組相等的分數(shù)有什么共同的特點?學生回答后板書:分數(shù)的分子和分母, 分數(shù)的大小不變。雖然他們的分子和分母變化了,但是它們的大小卻不變。那么他們的`分子和分母變化有規(guī)律嗎?我們今天就來共同探討這個變化規(guī)律。
三、比較歸納,揭示規(guī)律。
請每組拿出探究報告,任意選擇黑板上的二組相等分數(shù)中的一組,共同討論、探究,并完成探究報告。
1.課件出示探究報告。
2.分組匯報,歸納性質。
。1)從左往右看,分子、分母的變化規(guī)律怎樣?選擇一組學生根據(jù)探究報告,到黑板上邊說邊用箭頭表示出分子、分母的變化過程。
。ǜ鶕(jù)學生回答板書:同時乘上 相同的數(shù))
(2)從右往左看,分數(shù)的分子和分母又是按照什么規(guī)律變化的?
(根據(jù)學生的回答板書:除以 )
。3)有與這一組探究的分數(shù)不一樣的嗎?你們得出的規(guī)律是什么?
(4)綜合剛才的探究,你發(fā)現(xiàn)什么規(guī)律?
根據(jù)學生的回答,揭示課題,
。ā@叫做板書:分數(shù)的基本性質)
對這句話你還有什么要補充的?(補充“零除外”)
討論:為什么性質中要規(guī)定“零除外”?
。t筆板書:零除外)
。5)齊讀分數(shù)的基本性質。在分數(shù)的基本性質中,你認為要提醒大家注意些什么?(同時、相同的數(shù)、0除外)。為什么?你能舉例說明嗎?教師則根據(jù)學生回答,在相應的字下面點上著重號。
師生共同讀出黑板上板書的分數(shù)基本性質(要求關鍵的字詞要重讀)。
3、智慧眼(下列的式子是否正確?為什么?)
。1)35=3×25=65 (生:35的分子與分母沒有同時乘以2,分數(shù)的大小改變。)
(2)512=5÷512÷6=12 (生:512的分子除以5,分母除以6,除數(shù)的大小不同,分數(shù)的大小也不同)
。3)112=1×312÷3=34 (生:112的分子乘以3,而分母除以3,沒有同時乘以或除以,分數(shù)的大小不相等。)
。4)25=2×x5×x=2x5x (生:x在這里代表任何數(shù),當x=0時,分數(shù)的大小改變。)
4、示課件討論:現(xiàn)在你知道猴王運用什么規(guī)律來分餅的?如果小猴子要四塊,猴王怎么分才公平呢?用分數(shù)表示為?如果要五塊呢?
三、回歸書本,探源獲知
1、瀏覽課本第107—108頁的內容。
2、看了書,你又有什么收獲?還有什么疑問嗎?
3、師生答疑。
你會運用分數(shù)與除數(shù)的關系,以及整數(shù)除法中商不變的性質,說明分數(shù)的基本性質嗎?
4、自主學習并完成例2,請二名學生說出思路。
四、多層練習,鞏固深化。
1、熱身房。35=3×()5×()=9()
824=8÷()24÷()=()3
學生口答后,要求說出是怎樣想的?
分數(shù)的基本性質教學設計2
1.教材簡析
《分數(shù)的基本性質》是蘇教版小學數(shù)學教材第十冊的內容之一,在小學數(shù)學學習中起著承前啟后、舉足輕重的作用,它既與整數(shù)除法的商不變性質有著內在的聯(lián)系,也是后面進一步學習分數(shù)的計算、比的基本性質的基礎。分數(shù)的基本性質是一種規(guī)律性知識,分數(shù)的分子分母變了,分數(shù)的大小會變嗎?分數(shù)的分子分母如何變化,分數(shù)的大小不變呢?學生在這種“變”與“不變”中發(fā)現(xiàn)規(guī)律。
2.教材處理
以前,教師通常把《分數(shù)的基本性質》看作一種靜態(tài)的數(shù)學知識,教學時先用幾個例子讓學生較快地概括出規(guī)律,然后更多地通過精心設計的練習鞏固應用規(guī)律,著眼于規(guī)律的結論和應用。隨著課程改革的深入,教師們越來越重視學生獲取知識的過程,但我們也看到這樣的現(xiàn)象:問題較碎,步子較小,放手不夠,探究的過程體現(xiàn)不夠充分!斗謹(shù)的基本性質》可不可以有別的教學思路呢?新的課程標準提出:“教師應向學生提供充分從事數(shù)學活動的機會,幫助他們在自主探索和合作交流的過程中真正理解和掌握基本的數(shù)學知識與技能、數(shù)學思想和方法”。根據(jù)這一新的理念,我認為教師可以為學生創(chuàng)設一種大問題背景下的探索活動,使學生在一種動態(tài)的探索過程中自己發(fā)現(xiàn)分數(shù)的基本性質,從而體驗發(fā)現(xiàn)真理的曲折和快樂,感受數(shù)學的思想方法,體會科學的學習方法。所以,教師的著眼點,不能只是規(guī)律的結論和應用,而應有意識地突出思想和方法;谝陨纤伎,我以讓學生探究發(fā)現(xiàn)分數(shù)基本性質的過程為教學重點,創(chuàng)設了一種“猜想——驗證——反思”的教學模式,以“猜想”貫穿全課,引導學生遷移舊知、大膽猜想——實驗操作、驗證猜想——質疑討論、完善猜想等,把這一系列探究過程放大,把過程性目標”凸顯出來。
設計意圖:
本課主要本著遵循小學數(shù)學課程標準“創(chuàng)設問題情境提出問題解決問題建立數(shù)學模型解釋數(shù)學模型運用數(shù)學模型拓展數(shù)學模型”的指導思想而設計的。
1、通過故事創(chuàng)設問題情境,貼近學生生活,有利于激發(fā)學生學習興趣。
2、從故事情境中提出問題,體現(xiàn)數(shù)學來源于生活。
3、小組合作學習,共同探究解決問題,讓學生充分體驗知識產生的過程。
4、從幾組分數(shù)中分析,找到分數(shù)的基本性質,從而初步建立數(shù)學模型。
5、設計有坡度的練習,穿插師生互動,生生互動,讓整個運用知識的形式活潑有趣。、
6、在游戲活動中對數(shù)學知識進行拓展運用。
教學目標
1.知識與技能
(1)經歷探索分數(shù)的基本性質的過程,理解分數(shù)的基本性質。
(2)能運用分數(shù)的基本性質,把一個分數(shù)化成指定分母(或分子)而大小不變的分數(shù)。
2.過程與方法
(1) 經歷觀察、操作和討論等學習活動,并在探索過程中,能進行有條理的思考,能對分數(shù)的基本性質作出簡要的、合理的說明。
(2) 培養(yǎng)學生的觀察、比較、歸納、總結概括能力。
(3)能根據(jù)解決問題的.需要,收集有用的信息進行歸納,發(fā)展學生的歸納、推理能力。
3.情感態(tài)度與價值觀
(1)經歷觀察、操作和討論等數(shù)學學習活動,使學生進一步體驗數(shù)學學習的樂趣。
(2)體驗數(shù)學與日常生活密切相關。
教學重點
理解分數(shù)的基本性質
教學難點
能運用分數(shù)的基本性質,把一個分數(shù)化成指定分母(或分子)而大小不變的分數(shù)
教學準備
師:電腦課件 學生:圓紙片 長方形紙
教學步驟:
一、故事引人,揭示課題。
1.教師講故事。
話說唐僧師徒四人去西天去取經,這天走在路上,唐僧感覺餓了,就叫孫悟空去化齋,孫悟空答應了聲駕起筋斗云走了,不一會,他就帶回了三塊一樣大的餅,唐僧說:三塊餅,我們四個人怎么吃呢?孫悟空說:“你分給我一塊餅的四分之一就行了” 唐僧就把第一塊餅平均分成四塊,給了一塊給孫悟空。沙僧說:“我想要兩塊”
唐僧把第二塊餅平均分成八塊,給了2塊給沙僧。豬八戒比較貪心,他說:“我要三塊,我要三塊”,于是唐僧把第三塊餅又平均分成12塊,給了豬八戒3塊。同學們,你知道孫悟空、豬八戒、沙僧三人誰分的多嗎?
[ 一上課,先聽講一段故事,學生非常樂意,并會立即被吸引。思考故事當中提出的問題,學生自然興趣濃厚。通過故事設疑,激起了學生探求新知的欲望。]
2、組織討論,動手操作。
(1)小組討論,誰分的多
(2)拿出三張紙,分別涂出它們的1/4、2/8、3/12。
(3)比較涂色部分的大小,有什么發(fā)現(xiàn),得出什么結論。
既然他們三個分得的餅同樣多,那么表示它們分得餅的分數(shù)是什么關系呢?這三個分數(shù)什么變了,什么沒有變?讓學生小組討論后答出:這三個分數(shù)是相等關系,1/4=2/8=3/12,它們平均分的份數(shù)和表示的份數(shù)也就是分數(shù)的分子和分母變化了,但分數(shù)的大小不變。
(4)教師演示
3、教學例1
(1)引導比較。
師問:這四個分數(shù),為什么分母不同呢?前兩個分數(shù)的分子為什么都是1?
你知道其中哪些分數(shù)是相等的嗎?
根據(jù)學生回答板書:1/3=2/6=3/9
師追問:你是怎么知道這三個分數(shù)相等的?(圖中觀察出來的)
(2)師演示驗證大小。
(3)完成“練一練”第1題
學生先涂色表示已知分數(shù),再在右圖中涂出相等部分。
完成填空后,說說怎么想的。
4、教學例2。
(1)組織操作。
師:取出正方形紙,先對折,用涂色部分表示它的1/2。
學生完成折紙、涂色。
師問:你能通過繼續(xù)對折,找出和1/2相等的其它分數(shù)嗎?
學生在小組中操作,教師巡視指導。
學生展開折法并匯報,可能出現(xiàn)的方法有:
連續(xù)對折兩次,平均分成4份。如圖:
1/2=1/4
、谶B續(xù)對折三次,平均分成8份。如圖:
1/2=4/8
、圻B續(xù)對折四次,平均分成16份。
師追問:每次對折后,正方形被平均分成了多少份?涂色部分有多少份,可以用什么分數(shù)表示?
得到的這些分數(shù)與1/2相等嗎?能不能再寫一些與1/2相等的數(shù)?
板書:1/2=2/4=4/8=8/16=16/32……
(2)發(fā)現(xiàn)規(guī)律。
師:你有什么發(fā)現(xiàn)?(如學生觀察有困難,可進行以下提示)
、佟淖笸铱,它們的分子、分母是怎樣變化的?你有什么發(fā)現(xiàn)?
學生觀察、思考,在小組中交流。
師問:觀察例1中的1/3=2/6=3/9,有這樣的規(guī)律嗎?
分數(shù)的基本性質教學設計3
一、教材分析:
本節(jié)課是在學生學習了分數(shù)與除法的關系的基礎上來學習的,學生了解了分子相當于被除數(shù),分母相當于除數(shù)。通過觀察分子、分母的變化而分數(shù)值沒變這樣一個不完全歸納從而發(fā)現(xiàn)分數(shù)的基本性質。同時學生已經學過商不變規(guī)律再聯(lián)系到分數(shù)與除法的關系也可以類推出分數(shù)的基本性質,分數(shù)的基本性質和商不變規(guī)律是一致的。學生需通過觀察--探索--并抽象概括出分數(shù)的基本性質這就要求學生有較高的抽象概括能力。但這一要求對學困生來說就有點高了,所以在教學中應該兩種情況都要考慮到。
二、教學目標:
1、理解分數(shù)的基本性質。(學生總結出分數(shù)的基本性質后通過抓關鍵詞語并讓學生對這些詞語進行解釋,同時還通過舉反例來加深印象,在此基礎上我還出示了幾道判斷題來加深對分數(shù)基本性質的理解)。
2、初步掌握分數(shù)基本性質的應用。(主要活動是利用分數(shù)的基本性質把一個分數(shù)化成分母不同而大小相等的分數(shù),后面闖關的前三關都是分數(shù)基本性質的的運用。)
3、培養(yǎng)學生觀察-探索- 抽象-概括的能力。(先讓學生猜1/2、2/4、3/6的大小并動手涂色觀察涂色部分是相等的于是得出1/2=2/4=3/6然后讓學生觀察這幾個分數(shù)的分子、分母是如何變化的并試著用筆算算探索出其中的變化規(guī)律,并在老師的引導下抽象概括出分數(shù)的基本性質。)
4、滲透事物是發(fā)展變化的,感知變與不變的辨證關系。(溝通商不變規(guī)律與分數(shù)的基本性質之間的聯(lián)系,得出分數(shù)的基本性質后讓學生知道分數(shù)的分子、分母變化分數(shù)值不一定變化。)
5、本節(jié)重點是理解分數(shù)的基本性質及運用分數(shù)的基本性質;本節(jié)難點是抽象概括出分數(shù)的基本性質。(通過抓分數(shù)基本性質的關鍵詞語及運用分數(shù)的基本性質來解決問題,運用分數(shù)基本性質闖關等活動來突出重點;通過讓學生猜想及動手驗證,并認真觀察分子、分母的變化情況從而抽象概括出分數(shù)的基本性質這一活動來突破難點。)
三、學習目標:
1、課目內容分解表
序號知 識 點學習水平
識記理解應用 綜合評價
1復習題引出猜想 - = - = -
√
2動手驗證猜想- = - = - 并配合多媒體演示
√√√
3小組合作找規(guī)律√√
4得出規(guī)律√√
5運用規(guī)律解決問題√
6協(xié)作闖關活動√√
2、學習水平描述表
知識點學習水平描述語句
行為動詞
1綜合猜一猜- 、- 、- 哪個分數(shù)大猜想
2運用動手驗證猜想實驗驗證
3理解應用探索變化規(guī)律探索
4綜合得出規(guī)律總結
5應用運用規(guī)律解決問題運用
6綜合應用協(xié)作闖關活動競爭協(xié)作學習
四、媒體的選擇與運用
1、設計思想
由于本節(jié)內容是比較抽象的,所以我在具體操作過程中讓學生變抽象為直觀,這主要借助了我們的多媒體,用多媒體形象直觀地演示這樣一個過程,同時在運用分數(shù)的基本性質,我采用多形式的闖關活動避開了單純的計算,讓學生在活動中樂學、樂算。
2、媒體選用表
知識點媒體類型媒體的內容要點及來源媒體在教學中的作用
1大屏幕出示復習題(來源于電教館資源庫并用FLASH軟件進行整合)方便
2網(wǎng)絡投影播放涂紙條的教程(來源于天網(wǎng)里,也就是衛(wèi)星接收的資源)生動、直觀
3大屏幕及實物投影出示例2及分數(shù)比較
大小的例題(自己設計)便于演示
4大屏幕及
題單闖關活動(大部分資源來源于天網(wǎng)和地網(wǎng),但不是簡單的拿來用,而是把它重新整合設計成闖關的形式。)在場景中激發(fā)學生興趣
五 、學習環(huán)境的選擇
1、針對本節(jié)課的特點,采用的是模式二,以便師-生、生-生、生-機互動。
2、情境的類型,主要采用的是問題性情境讓學生帶著問題學習,激發(fā)學生的求知欲。
六、教學活動設計
1、學生獨立涂紙條的`1/2、2/4、3/6(2-3分鐘)培養(yǎng)學生的動手能力讓學生通過動手發(fā)現(xiàn)這三個分數(shù)的大小是相等的。
2、小組合作觀察討論1/2、2/4、3/6的分子、分母的變化情況,探索出規(guī)律并抽象概括出分數(shù)的基本性質(3-5分鐘)培養(yǎng)學生的抽象概括能力。
3、小組合作溝通商不變規(guī)律于分數(shù)的基本性質之間的聯(lián)系(2-3分鐘)讓學生感知事物之間是相互聯(lián)系發(fā)展的。
4、闖關活動(8-10分鐘)加深學生對分數(shù)基本性質的理解,培養(yǎng)學生獨立解答問題的能力及競爭意識。
七、教學成果評價
1、形成型評價
作業(yè)評價:內容是利用分數(shù)的基本性質闖關;形式是師評、自評、生生互評。
學生回答問題:師評、生評。
小組合作討論:小組內部或小組之間的互評。
2、即時評價:在抽象出分數(shù)的基本性質這個環(huán)節(jié)比較困難,對學習較困難的學生應對加引導和鼓勵找到問題之所在,幫助他讓他體會到成功的喜悅。
八、教學過程
1、談話引入
2、復習鋪墊,引出猜想
3、新授
師:動手驗證猜想
生:用筆涂三張同樣大小紙條的- 、- 、-
師:播放動畫演示得出- = - = -
問題性情景:- 、- 、-三個分數(shù)的分子分母是按照什么規(guī)律變化的?
生:觀察交流
生:匯報,師板書過程
師:引導學生分段得出規(guī)律
生:總結出規(guī)律,并對照書上補充。(齊讀)
師:板書性質,并強調重點詞語,并出示有關判斷題。
生:用所學知識解決小華疑問。
師:分數(shù)基本性質與前邊學過的什么規(guī)律相似?
生:商不變規(guī)律。
生:利用商不變規(guī)律說明分數(shù)基本性質。
4、運用
師:利用分數(shù)基本性質把一個分數(shù)化成分母不同而大小相等的分數(shù)。
出示例2、學生填在書上,抽生上臺在多媒體上演示并說明理由。
生:比較分數(shù)大小。
師:出示書上習題
生:獨立思考并解答(集體訂正)
5、課堂小結
這節(jié)課我們主要研究了什么內容?分數(shù)的基本性質是什么?我們利用分數(shù)基本性可以做什么?
6、闖關活動
、賻煟毫私怅J關進度,對學生闖關活動進行監(jiān)控。
②闖關完畢,演示第六關的解答過程(生述師演示)。
③情感教育。
九、環(huán)節(jié)預案
1、學生抽象概括出分數(shù)的基本性質這個環(huán)節(jié)比較抽象如果學生能順利就可以直接讓學生抓關鍵詞加深理解;如果學生不能總結出來師可以加以引導同時附加一些反例讓學生感知"同時"、"相同"、"0除外"這些詞語的意思,然后再引導學生用一句話表述出來,再做一些判斷題讓學生加深印象
2、溝通商不變規(guī)律與分數(shù)的基本性質時,學生如果不能清楚表示出來,則可以引導學生
被除數(shù)--分子
÷--分數(shù)線
除數(shù)--分母
在整數(shù)除法中被除數(shù)和除數(shù)同時擴大或縮小相同的數(shù)(0除外)商不變;所以分子、分母同時乘上或除以相同的數(shù)(0除外)分數(shù)的大小也不變。還可以再請一名學生復述。
3、闖關這個環(huán)節(jié)如果學生遇到了問題則可以讓這些學生說說自己存在的問題,同時可以讓學生對他進行幫助,也讓其體會到成功的喜悅。
十、板書設計
分數(shù)的基本性質
×
×2 ×3 ÷3 ÷2
- = - = - - = - = -
×2 ÷2
×3 ÷3
分數(shù)的分子和分母同時乘上或者除以一個相同的數(shù)(零除外)分數(shù)大小不變,這叫做分數(shù)的基本性質。
十一、教學流程圖
分數(shù)的基本性質教學設計4
教學要求
①使學生理解分數(shù)的基本性質,并會應用分數(shù)的基本性質把不同分母的分數(shù)化成分母相同而大小不變的分數(shù)。
②培養(yǎng)學生觀察、分析和抽象概括能力。③滲透“事物之間是相互聯(lián)系”的辯證唯物主義觀點。
教學重點理解分數(shù)的基本性質。
教學用具每位學生準備三張同樣的長方形紙條;教師:紙條、投影片等。
教學過程
一、創(chuàng)設情境
1.120÷30的商是多少?被除數(shù)和除數(shù)都擴大3倍,商是多少?被除數(shù)和除數(shù)都縮小10倍呢?
2.說一說:(1)商不變的性質是什么?(2)分數(shù)與除法的關系是什么?
3.填空。
1÷2=(1×2)÷(2×2)==。
二、揭示課題
讓學生大膽猜測:在除法里有商不變的性質,在分數(shù)里會不會也有類似的性質存在呢?這個性質是什么呢?
隨著學生的回答,教師板書課題:分數(shù)的基本性質。
三、探索研究
1.動手操作,驗證性質。
。1)讓學生拿出三張同樣的長方形紙條,分別平均分成2份、4份、6份,并分別把其中的1份、2份、3份涂上色,把涂色的部分用分數(shù)表示出來。
(2)觀察比較后引導學生得出:==
。3)從左往右看:==
由變成,平均分的份數(shù)和表示的份數(shù)有什么變化?
把平均分的份數(shù)和表示的份數(shù)都乘以2,就得到,即==(板書)。
把平均分的份數(shù)和表示的份數(shù)都乘以3,就得到,即:==(板書)。
引導學生初步小結得出:分數(shù)的分子、分母同時乘以相同的數(shù),分數(shù)的大小不變。
。4)從右往左看:==
引導學生觀察明確:的分子、分母同時除以2,得到。同理,的分子、分母同時除以3,也可以得到。
板書:====
讓學生再次歸納:分數(shù)的分子、分母同時除以相同的數(shù),分數(shù)的大小不變。
。5)引導學生概括出分數(shù)的基本性質,并與前面的猜想相回應。
。6)提問:這里的“相同的數(shù)“,是不是任何數(shù)都可以呢?(補充板書:零除外)
2.分數(shù)的基本性質與商不變的性質的比較。
在除法里有商不變的.性質,在分數(shù)里有分數(shù)的基本性質。
想一想:根據(jù)分數(shù)與除法的關系以及整數(shù)除法中商不變的性質,你能說明分數(shù)的基本性質嗎?
3.學習把分數(shù)化成指定分母而大小不變的分數(shù)。
。1)出示例2,幫助學生理解題意。
。2)啟發(fā):要把和化成分母是12而大小不變的分數(shù),分子應該怎樣變化?變化的根據(jù)是什么?
。3)讓學生在書上填空,請一名學生口答。教師板書:
====
4.練習。教材第108頁的做一做。
四、課堂實踐。
練習二十三的1、3題。
五、課堂小結
1.這節(jié)課我們學習了什么內容?
2.什么是分數(shù)的基本性質?
六、課堂作業(yè)
練習二十三的第2題。
七、思考練習
練習二十三的第10題。
教學反思:
“分數(shù)的基本性質”是西師版小學數(shù)學五年級下冊的內容,它是約分,通分的依據(jù),對于以后學習比的基本性質也有很大的幫助,所以,分數(shù)的基本性質是本單元的教學重點課。這節(jié)課我大膽利用“猜想和驗證”方法,留給學生足夠的探索時間和廣闊的思維空間,讓學生得到的不僅是數(shù)學基本知識,更重要的是數(shù)學學習的方法,從而激勵學生進一步地主動學習,產生我會學的成就感。目的是讓學生學會學習,學會思考,學會創(chuàng)造,進而培養(yǎng)學生用數(shù)學的思想方法,思考并解決在實際生活中所遇到的各種問題,這也是學生適應未來生活必須的基本素質。
這節(jié)課是在學生已掌握了商不變的性質之后,并在已有應用經驗的基礎上進行的,我是這樣設計教學的:
1、通過商不變的性質、除法與分數(shù)的關系的復習,幫助學生意識到商不變的變規(guī)律與新知識的聯(lián)系,為新知識的學習做好必要的準備。讓學生根據(jù)商不變的性質大膽猜想,分數(shù)的基本性質是什么?說出自己的想法。
2、充分發(fā)揮學生主體作用,引導學生自主探究。讓學生通過折紙游戲,操作、觀察、比較,驗證自己的猜想。涂色部分可用不同的分數(shù)表示,從而培養(yǎng)學生的動手能力,以及觀察問題、解決問題的能力。
3、運用知識,解決實際問題。為了把知識轉化為能力,練習的設計注意了典型性、多樣性、深刻性、靈活性。歸納總結出分數(shù)的基本性質后,先進行基本練習,深化對分數(shù)的基本性質認識。在學完整個新知以后,在進行綜合練習,鞏固提高。通過應用拓展,使學生加深對分數(shù)的基本性質的理解,并培養(yǎng)學生運用所學的知識解決實際問題的能力。
4、0除外的環(huán)節(jié)設計。在學生歸納出分數(shù)的基不性質后,缺少0除外這個難點,我設計了判斷一個分數(shù)的分子和分母同時乘0,讓學生通過練習,馬上想到0不能做除數(shù),在分數(shù)中分母不能為0,引出:分子和分母同時乘或除以相同的數(shù),必須0除外,突破難點。
分數(shù)的基本性質教學設計5
教學內容:人教版五年級數(shù)學下冊57頁內容及58、59頁練習。
教學目標:
知識與技能:通過教學使學生理解的掌握分數(shù)的基本性質,能運用分數(shù)的基本性質把一個分數(shù)化成指定分母(或分子)相同而大小不變的分數(shù),并能應用這一性質解決簡單的實際問題。
過程與方法:引導學生在參與觀察、比較、猜想、驗證等學習活動的過程中,有條理,有根據(jù)地思考、探究問題,培養(yǎng)學生的抽象概括能力。
情感、態(tài)度和價值觀:使學生受到數(shù)學思想方法的熏陶,培養(yǎng)樂于探究的學習態(tài)度。
教學重點:理解和掌握分數(shù)的基本性質。
教學難點:應用分數(shù)的基本性質解決問題。
教學準備:預習生成單、作業(yè)紙、課件
教學課時:一課時
教學過程:
一、導入新課,揭示課題
1、師:通過昨天的預習,你知道我們今天要學習什么內容?(生:分數(shù)的基本性質)
2、師:針對這個內容,同學們做了充分的預習,相信你們一定提出了不同的數(shù)學問題,現(xiàn)在請組長帶領組員提煉出你們組最想研究的問題。
3、指名學生匯報。
4、師:同學們,不管你們提出什么樣的問題,都與分數(shù)的基本性質有關,今天我們就帶著這些問題走進課堂。
二、檢查預習,自主探究
1.出示預習生成單:(師:我們已經預習了這部分內容,請同學們組內交流一下你們的預習成果,形成統(tǒng)一意見準備匯報。)
2.指名上臺展示并匯報。(師:哪個組的同學愿意最先上來展示你們的成果?)
3.(學生展示中注意分工匯報,在匯報中要注意學生用比一比的方法證明涂色部分相等,如果有用分數(shù)的意義的理解“都是相同紙的一半”或者“分子是分母的一半”理解也要給予肯定,教師應及時提出,照這樣一半的理解,提問:你能在寫出一個和他們大小一樣的分數(shù)嗎?教師及時的板演,
4.師:其他同學還有補充嗎?你們得出這個結論了嗎?
三、合作交流,探究新知
1.師:第一張紙涂色部分是這張紙的(學生說二分之一),第二張紙涂色部分是這張的(四分之二),第三張紙涂色部分是這張紙的(八分之四),涂色部分都相同,也就證明這三個分數(shù)的大小也(學生說相等),可是,它們的分子分母卻不相同,他們有沒有一定的變化規(guī)律呢?我們通過合作交流來探究這個問題。
2.出示合作要求(課件),指名學生讀一讀。
3.學生合作交流,探究學習。
4.學生匯報中教師要及時糾正學生的'語言要規(guī)范,同時,可以讓小組回想補充,特別是,跳躍的兩個分數(shù)的分子和分母之間的變化規(guī)律是怎樣?
5.指導匯報,總結規(guī)律。誰能完整的說一下你們剛才總結出的規(guī)律?
6.教師歸納板書:分數(shù)的分子和分母同時乘或者除以相同的數(shù),分數(shù)的大小不變。
7.請同學們讀一讀這句話,想一想:還有需要補充的內容嗎?(0除外)
8.再讀一讀,說說這句話中哪個詞比較關鍵。
9.拓展深化,加深理解,完成練習,思考:分數(shù)的基本性質與商不變的性質之間的聯(lián)系。(練習一)這個過程也要看學生的生成在哪,教師及時的給予肯定。
9.教師小結:通過剛才的學習,孩子們的表現(xiàn)特別出彩,老師相信你們接下來的表現(xiàn)會更棒。
四、應用拓展,新知內化
1.出示例2,指名讀題,理解題意。
2.師:你覺得解決這道題應該利用什么知識?(生:分數(shù)的基本性質)
3.學生獨立在練習本上完成,指名板演,集體訂正。
4.小結:剛才,我們通過自主學習、小組探究知道了什么是分數(shù)的基本性質,下面就應用分數(shù)的基本性來解決一些實際問題。
五、當堂檢測
。ㄒ唬⑾旅婷拷M中的兩個分數(shù)是否相等?相等的在括號里畫“√”,不相等的畫“X”。
和()和()和()和()
(二)、填空。
======
。ㄈ严铝蟹謹(shù)化成分母是10而大小不變的分數(shù)。
===
。ㄋ模⑼可硎境雠c給定分數(shù)相等的分數(shù)。
(五)、如果一堂課40分鐘,哪個班做練習用的時間長?
六、課堂小結:通過這節(jié)課的學習,你學會了什么?
板書設計:
分數(shù)的基本性質
分數(shù)的分子和分母同時乘或除以相同的數(shù)(0除外),分數(shù)的大小不變。
這節(jié)課最多的考慮就是分數(shù)的基本性質這個規(guī)律怎樣才能讓學生真正的夯實,怎樣設計才能讓學生水到渠成的加深了理解。在練習的設計和過渡語的設計都是關鍵。
分數(shù)的基本性質教學設計6
教學目標
1. 讓學生通過經歷預測猜想——實驗分析——合情推理——探究創(chuàng)造的過程,理解和掌握分數(shù)的基本性質,知道它與整數(shù)除法中商不變性質之間的聯(lián)系。
2. 根據(jù)分數(shù)的基本性質,學會把一個分數(shù)化成用指定的分母做分母或指定的分子做分子而大小不變的分數(shù),為學習約分和通分打下基礎。
3. 培養(yǎng)學生觀察、分析和抽象概括的能力,滲透事物是互相聯(lián)系、發(fā)展變化的辯證唯物主義觀點。體驗到數(shù)學驗證的思想,培養(yǎng)敢于質疑、學會分析的能力。
教學重點使學生理解分數(shù)的基本性質。
教學難點讓學生自主探索,發(fā)現(xiàn)和歸納分數(shù)的基本性質,以及應用它解決相關的問題。
教學過程
一、故事情景引入
同學們,每年的中秋節(jié)你們都會吃什么呢?對了,月餅。中秋吃月餅是我們中國傳統(tǒng)風俗。去年的中秋節(jié),易老師的鄰居李奶奶家里,發(fā)生了一件有趣的事情,大家想不想知道?
好,既然大家都這么好奇,就張開小耳朵認真聽。去年的中秋節(jié)呀,李奶奶家的孫兒小紅、小明、小兵都來了,家里可熱鬧了。李奶奶笑得合不攏嘴,她拿出一個又大又圓的月餅,對孫兒們說:“孩子們,奶奶給你們分月餅了。老大小紅,奶奶分這塊月餅的1/3給你,老二小明,奶奶分這塊月餅的2/6給你,老三小兵,奶奶分這塊月餅的3/9給你,(邊講邊貼出名字和三個分數(shù))你們同意嗎?”奶奶的話剛講完,小紅就嘟著嘴叫了起來:“奶奶你不公平!分給小兵的多,分給我的少!”小明連忙叫著:“奶奶不公平,奶奶偏心!”只有小兵在偷著樂。
同學們,你們覺得奶奶公平嗎?現(xiàn)在同桌之間討論一下。
討論完了請舉手。
生甲:“我覺得不公平,小紅分得多!
生乙:“我覺得小明分得多!
生丙:“我覺得公平,他們三個分得一樣多!
師:“看樣子我們班的.同學也爭論起來了,到底李奶奶的月餅分得公不公平,上完這一節(jié)課同學們就會明白了。”
二、新授
師:“下面我們來做個實驗。同學們請你們拿出老師為你們準備的學具袋,看看袋子里有些什么呢?(圓片)有幾張?(三張)”
請你們把這三張圓片疊起來,比一比大小,看看怎么樣?
生:“三張圓片一樣大!
1.師: “ 下面我們就用三張一樣大的圓片代替月餅,象李奶奶一樣來分月餅了!
首先,請在第一張圓片上表示出它的1/3;
再在第二張圓片上表示出它的2/6;
然后在第三張圓片上表示出它的3/9。
好了,大家動手分一分。(教師巡視指導)
2. 師:“分完了的請舉手?
老師跟你們一樣,也準備了三張同樣大小的圓片。(邊說邊操作,同樣大)
下面請哪位同學說一說,你是怎么分的?”
生:“把第一個圓片平均分成三份,取其中的一份,就是它的三分之一!
生:“把第二個圓片平均分成六份,取其中的兩份,就是它的六分之二。”
師:“那九分之三又是怎么得到的呢?大家一起說!
生:“把這塊圓片平均分成九份,取其中的三份,就是它的九分之三。 ”
。▽W生說的同時,教師操作,分完后把圓片貼在黑板上。)
3. 師:“同學們,觀察這些圓的陰影部分,你有什么發(fā)現(xiàn)?”
小結:原來三個圓的陰影部分是同樣大的。
師:“ 現(xiàn)在再來評判一下,奶奶分月餅公平嗎?為什么?”(請幾名學生回答)
生:“奶奶分月餅是公平的,因為他們三個分得的月餅一樣多!
師:“現(xiàn)在我們的意見都統(tǒng)一了,奶奶是非常公平的,他們三個人分的月餅一樣多。那你覺得1/3、2/6、3/9這三個分數(shù)的大小怎么樣呢?”
生甲:“通過圖上看起來,這三個分數(shù)應該是一樣大的!
生乙:“這三個分數(shù)是相等的。”
師:“剛才的試驗證明,它們的大小是相等的!保ò鍟,打上等號)
4. 研究分數(shù)的基本規(guī)律。
師:“我們仔細觀察這一組分數(shù),它的什么變了,什么沒變?”
生甲:“三個分數(shù)的分子分母都變了,大小沒變。”
師:“那它的分子分母發(fā)生了怎樣的變化呢?讓我們從左往右看。
第一個分數(shù)從左往右看,跟第二個分數(shù)比,發(fā)生了什么變化?”
生乙:“它的分子分母都同時擴大了兩倍!
師:“跟第三個分數(shù)比,它又發(fā)生了什么變化?”(生回答)對了,它的分子分母都同時擴大了三倍。
再引導學生反過來看,讓學生自己說出其中的規(guī)律。(邊講邊板書)
教師小結:“剛才大家都觀察得很仔細,這組分數(shù)的分子分母都不同,它們的大小卻一樣,那么,分子分母發(fā)生怎樣變化的時候,它的大小不變呢?同桌之間互相說一說,總結一下,好嗎?”
學生發(fā)言
小結:像分數(shù)的分子分母發(fā)生的這種有規(guī)律的變化,就是我們這節(jié)課學習的新知識。分數(shù)的基本性質。
5. 深入理解分數(shù)的基本性質。
師:“什么叫做分數(shù)的基本性質呢?就你的理解,用自己的語言說一說!保▽W生討論后發(fā)言)
師:剛才同學們都用自己的語言說了分數(shù)的基本性質,我們的書上也總結了分數(shù)的基本性質,現(xiàn)在請打開書看到108頁?纯磿鲜窃趺凑f的,是你說得好,還是書上說得好,為什么?
齊讀分數(shù)的基本性質,并用波浪線表出關鍵的詞。
生甲:我覺得“零除外”這個詞很重要。
生乙:我覺得“同時”“相同”這兩個詞很重要。
師:想一想為什么要加上“零除外”?不加行不行?
讓學生結合以前學過的商不變的性質討論,為什么加“零除外”。
教師小結:“以三分之一這個分數(shù)為例,它的分子分母同時除以零,行嗎?不行,除數(shù)為零沒意義。所以零要除外。同時乘以零呢?我們就會發(fā)現(xiàn),分子分母都為零了,而分數(shù)與除法的關系里,分母又相當于除數(shù),這樣的話,除數(shù)又為零了,無意義。所以一定要加上零除外。”(邊講邊板書。)
三、應用
1.學了分數(shù)的基本性質到底又什么用呢?老師告訴你們,根據(jù)分數(shù)的基本性質,我們就能變魔術一樣,把一個分數(shù)變成多個跟它大小一樣,分子分母卻不同的新分數(shù)。下面就讓我們來變個魔術。
2.學生練習課本例題2,兩名學生在黑板上做。
3.學生自己小結方法。
4.按規(guī)律寫出一組相等的分數(shù)。
分數(shù)的基本性質教學設計7
教學目標
1、學生能理解和掌握分數(shù)的基本性質,知道分數(shù)的基本性質與整數(shù)除法中商不變的性質之間的聯(lián)系。
2、學生能運用分數(shù)的基本性質把一個分數(shù)化成分母不同而大小相等的分數(shù)。
3、培養(yǎng)學生觀察、比較、抽象概括的邏輯思維能力,滲透“事物之間是相互聯(lián)系的”辯證唯物主義觀點。
教學重、難點:
理解分數(shù)基本性質的含義,掌握分數(shù)基本性質的推導過程。運用分數(shù)的基本性質解決實際問題。
教學過程:
一、復習舊知,了解學習起點
二、創(chuàng)設情境,激趣引入
課件動畫顯示:藍貓、菲菲、霸王龍最喜歡吃淘氣做的餅。有一天淘氣做了3塊大小一樣的餅分給藍貓、菲菲、霸王龍。藍貓說:“我功勞最大,我要吃一大塊!狈品普f:“我要吃兩塊!卑酝觚垞屩f:“我個頭最大,我要吃3塊!碧詺庀肓讼氡銊邮智酗灊M足了他們的要求,并向他們提問:“剛才,我把3個同樣大小的餅,平均分成2份、4份、6份,分別給了你們1塊、2塊、3塊,你們知道誰吃的多嗎?”淘氣的問題,立刻引起了他們的爭論。同學們,你們知道他們誰吃得多嗎?
三、探究新知,揭示規(guī)律
1.動手操作,形象感知。
。1)折。請學生拿出3張同樣大小的圓形紙,把每張圓形紙都看做單位“1”,用手分別平均折成2份、4份、6份。
。2)畫。在折好的圓形紙上,分別把其中的1份、2份、3份畫上陰影。
。3)剪。把圓中的陰影部分剪下來。
。4)比。把剪下的陰影部分重疊,比一比結果怎樣。
2.觀察比較,探究規(guī)律。
。1)通過動手操作,誰能說一說動畫片中藍貓、菲菲、霸王龍各吃了一個餅的幾分之幾?(板書。)
。2)你認為他們誰吃的多?請到講臺上一邊演示一邊講一講。
學生匯報后,教師用電腦演示。
把3塊同樣大小的餅分別平均分成2份、4份、6份,依次表示。把平移、重疊,明顯地看出塊餅、塊餅、塊餅大小相等。通過分餅、觀察、驗證得出結論:“藍貓、菲菲、霸王龍分的餅一樣多!
(3)既然他們3個吃的同樣多,那么、的大小怎樣?我們可以用什么符號把他們連接起來?(板書。)
。4)聰明的淘氣是用什么辦法既滿足藍貓、菲菲、霸王龍的要求,又分得那么公平呢?這就是我們今天研究的內容“分數(shù)的基本性質”。(板書課題。)
。5)這3個分數(shù)的分子、分母都不同,為什么分數(shù)的大小卻相等?你們能找出它們的變化規(guī)律嗎?請同學們4人為一組,討論這幾個問題。(課件出示討論題。)
討論題:
、偎鼈冎g有什么關系?它們的什么變了?什么沒有變?
②從左往右看,是按照什么規(guī)律變化的?從右往左看,又是按照什么規(guī)律變化的呢?
。6)學生匯報,師生討論情況。
師:這3個分數(shù)是相等的關系。可以寫成,它們的分子、分母變了,而分數(shù)的.大小沒有變。
師:從左往右看,由得到,是把的分子、分母都乘以2,也就是把分的份數(shù)和表示的份數(shù)都擴大2倍,就得到。同理的分子、分母都乘以3,就得到,而分數(shù)的大小不變。(板書:都乘以相同的數(shù)。)
從右往左看,分數(shù)的分子和分母又是按照什么規(guī)律變化的?通過分析,比較,,得出:分數(shù)的分子和分母都除以相同的數(shù),分數(shù)的大小不變。
。7)抓住焦點,辨中求真。
的分子、分母能否同時乘以或者除以零呢?圍繞這個問題展開討論、辯論。通過討論、爭辯,使學生認識到“因為分數(shù)的分子、分母都乘以0,則分數(shù)成為”。
分數(shù)的基本性質教學設計8
一、學習目標:
1、學生能理解和掌握分數(shù)的基本性質,知道分數(shù)的基本性質與整數(shù)除法中商不變的規(guī)律之間的聯(lián)系。
2、學生能運用分數(shù)的基本性質把一個分數(shù)化成分母不同而大小相等的分數(shù)。
3、培養(yǎng)學生觀察、比較、抽象、概括的邏輯思維能力,滲透“事物之間是相互聯(lián)系的”辨證唯物主義觀點。
二、重、難點:
理解和掌握分數(shù)的基本性質。
三、學習過程:
一、導入
。1)3張同樣的正方形或長方形紙片,(如下圖)平均分成2份、4份、8份,涂上顏色,分別用分數(shù)表示涂色部分。
(2)你發(fā)現(xiàn)了什么?
二、學習新知
1、師板書 = =
2、觀察三組分數(shù),它們的分子和分母是怎樣變化的?
分小組討論,并填寫
1 ( ) 2 1 ( ) 4
2 ( ) 4 2 ( ) 8
4 ( ) 2 2 ( ) 1
8 ( ) 4 4 ( ) 2
總結:分數(shù)的分子和分母同時 或 相同的數(shù),分數(shù)的大小
3、應用
根據(jù)分數(shù)的基本性質,我們可以寫出很多相等的分數(shù)
⑴的分子和分母同時乘2,等于( );同時乘4,等于( );
同時乘5,等于( );同時乘7,等于( )
總結: =( )=( )=( )= ( )
、= 說出你這樣填的理由
= 說出你的理由
4、鞏固練習
、诺80頁 (直接做在課本上)
、疲谙旅娴睦ㄌ柪锾钌线m當?shù)臄?shù)。
在下面的()里填上適當?shù)臄?shù),在○里填上“×”號或“÷”,使等式成立
⑶
請你當法官(說明理由)
、认旅娴姆謹(shù)化成分母是12,而大小不變的分數(shù)
、上旅娴腵分數(shù)化成分子是6,而大小不變的分數(shù)
5、拓展練習
判斷
1、分數(shù)的分子和分母同時加上或者減去相同的數(shù),分數(shù)的大小不變。( )
2、把 的分子增加1,分母增加3,分數(shù)的大小不變。( )
3、把 的分子擴大2倍,分母縮小2倍,分數(shù)的大小不變。( )
思考:一個分數(shù)的分母不變,分子乘以3,這個分數(shù)的大小有什么變化嗎?如果分子不變,分母除以5呢?
分數(shù)的基本性質教學設計9
【教材依據(jù)】
《分數(shù)的基本性質》是九年義務教育北師大版五年級上冊第三單元的內容。
【設計理念】
根據(jù)新課標的基本要求,我以培養(yǎng)學生的創(chuàng)新意識和實踐能力為重點,在教學中創(chuàng)設情境讓學生“自由大膽猜想——主動探究驗證——合作交流得到結果”的開放式教學流程。讓學生在問題情境中激活內在要求,大膽猜想,使實驗成為內在需求。通過觀察操作、經歷知識的形成。讓學生變被動的知識接受者為主動知識的探索者。
【學情與教材分析】
《分數(shù)的基本性質》是北師大版小學數(shù)學教材五年級上冊第三單元《分數(shù)》的教學內容,它既與整數(shù)除法的商不變性質有著內在的聯(lián)系,也是約分和通分的基礎,而約分和通分又是分數(shù)四則運算的重要基礎,因此,理解分數(shù)的基本性質顯得尤為重要。學生之前已經掌握了商不變的性質,在教學之后將其與分數(shù)的基本性質進行聯(lián)系,有意識地加強分數(shù)與除法的關系,以便把舊知識遷移到新的知識中來。
【教學目標】
1、經歷探索分數(shù)基本性質的過程,理解分數(shù)的基本性質。
2、能運用分數(shù)基本性質,把一個數(shù)化成指定分母(或分子)大小不變的分數(shù)。
3、經歷觀察、操作和討論等數(shù)學活動,體驗數(shù)學學習的樂趣及數(shù)學與日常生活密切聯(lián)系。
【教學重點】運用分數(shù)的基本性質,把一個數(shù)化成指定分母(或分子)而大小不變的分數(shù)。
【教學難點】聯(lián)系分數(shù)與除法的關系,理解分數(shù)的基本性質,溝通知識間的'聯(lián)系。
【教學準備】多媒體課件長方形白紙、圓片,彩色筆等。
【教學過程】
一、創(chuàng)設情境,激趣導入
師:同學們,新的學期到來了,你們剛入校園時覺得我們學校都發(fā)生了哪些變化,(換了新課桌,有了新的洗手間,有了文化走廊,有了開心農場),說到開心農場,還有一個小故事,開學初,校長決定把這塊地的三分之一分給四年級,六分之二分給五年級,九分之三分給六年級,四年級同學認為校長不公平,分給六年級的同學多而分給他們的少,校長聽了,笑了,誰能根據(jù)自己的預習告訴老師校長笑什么?
生1:四、五、六年級分的地一樣多。
生2:……
師:到底校長分的公平不公平,我們來做個實驗吧?
二、動手操作,探究新知
1,小組合作,實驗探究。
師:請同學們拿出你們準備好的學具,按平時的分組習慣四人一組,用你們的學具來代替這塊地,像校長一樣來分地吧。
2,匯報結果
師生交流:你們是怎樣做的?誰能說一說,請幾個同學上臺演示并口述演示過程。
生1:用三張同樣的長方形的紙來代替這塊地,分別涂出其中的三分之一,六分之二,九分之三。經過對比發(fā)現(xiàn)三塊地一樣多。
生2:用三個同樣的圓片分別涂出其中的三分之一,六分之二,九分之三。經過對比發(fā)現(xiàn)三塊地一樣多。
生3:用三條線段分別畫出其中的三分之一,六分之二,九分之三。經過對比發(fā)現(xiàn)三塊地一樣多。
生4:把分數(shù)化成小數(shù),他們的商也一樣,所以三塊地的面積一樣大。
生5:……
3、課件展示,得出結論。師:校長分的和你們一樣嗎?我們再來看看小電腦是如何拼的,(利用優(yōu)質資源課件演示分地的過程,師生共同觀察總結得到校長分的地一樣多。)
。ㄔO計意圖:這樣設計的目的是為了更有利于學生主體個性的發(fā)揮,在探究活動中充分發(fā)揮學生的個體的潛能,給學生足夠的時間和想象的空間,進行小組合作式的探究活動,讓學生自由的猜想,使實驗成為自己的需要,同時讓學生思考用什么方法驗證,使學生帶著濃濃的興趣進入探究新的學習活動之中。)
4、探索分數(shù)的基本性質。
師:三個年級分的地一樣多,那么你們覺得、、這三個分數(shù)的大小怎么樣?
生:相等。
師:同學們請看這組分數(shù)有什么特點?(板書=)
生:分數(shù)的分子分母發(fā)生了變化分數(shù)的大小不變。
師:請同學們從左往右仔細觀察,第一個分數(shù)和第二個分數(shù)相比分子分母發(fā)生了什么變化?第一個和第二個,第二個和第三個呢?
生:分子分母同時乘2,……
師:誰能用一句換來描述一下這個規(guī)律?
生:給分數(shù)的分子分母同時乘相同的數(shù)。(師隨著板書)
師:同學們在反過來從右往左觀察,分數(shù)的分子、分母有什么變化規(guī)律?
生:分數(shù)的分子分母同時除以相同的數(shù)。
師:像這樣給分數(shù)的分子分母同時乘或(除以)相同的數(shù),分數(shù)的大小不變。就是我們這節(jié)課學習的新知識。(板書分數(shù)的基本性質)。
師:結合我們的預習,對于分數(shù)的基本性質同學們還有什么不同的意見?
生:0除外。
師:為什么0要除外?
生:因為分數(shù)的分母不能為0.
師:(補充板書0除外)在分數(shù)的基本性質中,那幾個詞比較重要?
生:同時相同0除外
師:(把這三個詞用紅筆加重)同學們有沒有發(fā)現(xiàn)分數(shù)的基本性質和誰比較相似?
生:商不變的性質。
師:為什么?
生:我們學過分數(shù)與除法的關系,被除數(shù)相當于分子,除數(shù)相當于分母,所以他們是相通的。
師:數(shù)學知識中有許多知識如像商不變性質與分數(shù)的基本性質是一致的。因此平時學習中我們要觸類旁通,靈活運用,才會舉一反三。
三:應用新知,練習鞏固。
(一)練一練
。ǘ┟蛴螒颉@蠋熓种杏幸粋箱子,里面裝有許多水果,水果上面寫著不同的分數(shù),如果你摸到一個水果,說出一個與它大小相等,而分子分母不同的新分數(shù),這個水果就獎勵給你。
。ǘ┡袛啵〒尨穑
1、分數(shù)的分子、分母都乘過或除以相同的數(shù)分數(shù)的大小不變。
2、把的分子縮小5倍,分母也縮小5倍分數(shù)的大小不變。
3、給分數(shù)的分子加上4,要是分數(shù)的大小,分母也要加上4。
(四)測一測
1、把和都化成分母是10而大小不變的分數(shù)。
2、把和都化成分子是4而大小不變的分數(shù)。
3、的分子增加2,要是分數(shù)大小不變,分母應增加幾?
四:總結。
1、這節(jié)課大家表現(xiàn)的都很棒,誰能說說你這節(jié)課你都知道哪些知識?
2、把板書最后補充成一條魚,希望大家擁有一雙明亮的眼睛,肚子里裝滿知識,在知識的海洋里遨游。(完成板書)
五:作業(yè)練習冊2、4題
【板書設計】
分數(shù)的基本性質
給分數(shù)的分子分母同時乘或除以相同的數(shù)(0除外)分數(shù)的大小不變。
【教學反思】
本節(jié)課教學,我讓學生在故事中感悟,激發(fā)了他們的學習興趣。在數(shù)學課上講故事,對孩子來說,無疑是新鮮有趣的。不僅如此,還能從中發(fā)現(xiàn)數(shù)學問題,這是多么美好的事情!
這樣的設計真是激發(fā)了學生的學習興趣,學生帶著愉快的心情展開學習。課堂的故事導入就是引導學生以數(shù)學的視角來分析問題、解決問題,從而讓學生感受學習數(shù)學的價值。
本節(jié)課教學是讓學生在感悟中自主探索。自主探索是學生學習活動的核心,它是讓每個學生根據(jù)自己的已有經驗、感受,用自己的思維方式,自由、開放地去探索、去發(fā)現(xiàn)、去創(chuàng)造。
在學生通過聽故事、看圖片,讓學生猜想、、這三個分數(shù)是否真的相等,并聯(lián)想學過的知識或借助學具,怎樣證明你的聯(lián)想是正確的。學生想出了多種方法證明這三個分數(shù)也是相等的,體現(xiàn)了學生思維的廣度,這種設計克服了學生思維的惰性,有利于學生自主探索的學習習慣的養(yǎng)成。課堂給學生多設計這樣的開放性的問題,多給學生開展一些探索性的活動,相信不同的學生在數(shù)學上都會有不同的發(fā)展。
分數(shù)的基本性質教學設計10
教學目標:
結合趣味故事經歷認識分數(shù)的基本性質的過程。
初步理解分數(shù)的基本性質,會應用分數(shù)的基本性質進行分數(shù)的改寫。
經歷觀察、操作和討論等學習活動,體驗數(shù)學學習的樂趣
教學重點:理解掌握分數(shù)的基本性質。
教學難點:歸納分數(shù)的性質。
學生準備:長方形紙片。
一、創(chuàng)設故事情境,激發(fā)學生學習興趣并揭示課題。
編了一個唐僧師徒4人分西瓜的故事,利用孫悟空的機智聰明和豬八戒貪吃的特點。創(chuàng)設問題情境引起學生的探究興趣,通過把一個西瓜平均分成4塊,豬八戒吃了一塊,再把這西瓜平均分成8塊,豬八戒吃了2塊。最后把西瓜分16塊,豬八戒吃了4塊,設計這個故事的目的是使學生在已有生活經驗和分數(shù)知識的背景下,了解豬八戒沒有多吃到餅的事實,為理解分數(shù)的基本性質提供實踐經驗。在看完故事后向學生提問你了解到了哪些數(shù)學信息,想到了什么問題?
讓學生討論并用自己的方法說明八戒沒有多吃到餅。讓學生親自動手折一折、分一分、比一比,通過課件從直觀上讓學生感受到這三個分數(shù)大小是相等的。而這兩個分數(shù)的分子和分母都不相等,可分數(shù)卻相等,這其中有什么規(guī)律呢,從而來揭示課題。
二、小組合作,探究新知:
1、動手操作、形象感知
出示課件,讓學生觀察討論圖中分數(shù)的涂色部分是多少?
A、談話:請同學們拿出課前準備好的一張正方形的紙,你能先對折,并涂出它的1/4嗎?
B、追問:你能通過繼續(xù)對折,每次找一個和1/4相等的其他分數(shù)嗎?
C、學生操作,并組織交流:每次對折后,正方形被平均分成多少份。涂色部分有幾份。并思考可以用什么分數(shù)表示涂色的部分,得到的分數(shù)與1/4是否相等。交流時讓不同對折方法的學生充分展示。
2、觀察比較、探究規(guī)律
。1)通過動手操作,你認為它們誰大?請到展示臺上一邊演示一邊講一講。
。2既然這三個分數(shù)相等,那么我們可以用什么符號把它們連接起來?
。3)這三個分數(shù)的分子、分母都不相同,為什么分數(shù)的大小卻相等的?你們能找出它們的變化規(guī)律嗎?請同學們四人為一組,討論這兩個問題
。4)通過從左到右的觀察、比較、分析,你發(fā)現(xiàn)了什么?
使學生認識到這四個正方形同樣大,雖然平均分的份數(shù)不一樣,但陰影部分的面積相等,四個分數(shù)也相等。課件出示連等式子。
【通過展示不同的對折方法,使學生體會解決問題方法的多樣性,拓展學生的思維!
3引導觀察:請大家觀察每個等式中的.兩個分數(shù),它們的分子、分母是怎樣變化的?
觀察思考后。在課文上填空,再在小組內交流。然后教師再集中指導觀察:
先從左往右看:1/4是怎樣變?yōu)榕c它相等的2/8的?由2/8到4/16,分子、分母又是怎樣變化的?誰用一句話說出它的變化規(guī)律?再從右往左看:4/16是怎樣變化成與之相等的2/8的?2/8、1/4呢?用一句話說出它的變化規(guī)律?
4、歸納規(guī)律
提問:綜合以上兩種變化情況,誰能用一句話概括出其中的規(guī)律?
學生交流歸納,最后全班反饋“分數(shù)的分子和分母同時乘或除以相同的數(shù)﹙0除外﹚,分數(shù)的大小不變,這是分數(shù)的基本性質”
6、小結
同學們在這節(jié)課的學習中表現(xiàn)得很出色,說一說你有什么收獲或體會?
【通過小結,既對整個課堂學習的內容有一個總結,又能讓學生產生后續(xù)學習和探究的欲望,將學生的學習興趣延伸到了下節(jié)課】
四、鞏固強化,拓展應用
多樣的練習可以讓學生及時鞏固所學知識,又調動了學生學習的積極性。
五、游戲找朋友。
六、布置作業(yè):
在上這課之前,認真?zhèn)湔n,精心設計課堂思路,準備好教具。課前,活躍氣氛。開始可能是由于農村吧,基本上,上課都是用黑板,難得一次上課時利用多媒體上課的。學生對此也是很有興趣的,特別是在創(chuàng)設情景的時候,很開心的投入課堂氣氛來。緊接著動手操作等步驟都很好。唯一不足是學生沒感大膽發(fā)言。對于問題,答得不是很清晰。教師讓學生主動探索,逐步獲取規(guī)律,最后也都一一的解答并歸納分數(shù)的性質。對于從左到右的變化,分子分母都變大了,但分數(shù)大小不變。從右到左,分子分母都變小,分數(shù)大小不變。從而得出規(guī)律。對于這分數(shù)的性質要讓學生抓住幾個重點詞,“都”“乘以或除以”“相同的數(shù)”“零除外”重點讓學生熟記分數(shù)的性質。多層的鞏固練習。加深學生的理解。并且能運用分數(shù)的性質完成作業(yè)。最后,讓學生輕松愉快地應用著這節(jié)課所學的知識進行找朋友的游戲。
分數(shù)的基本性質教學設計11
教學內容:蘇教版小學數(shù)學第十冊第95頁至97頁。
教學目標:
知識目標:通過教學使學生理解和掌握分數(shù)的基本性質,能利用它改變分數(shù)的分子和分母,而使分數(shù)的大小不變。
能力目標:培養(yǎng)學生的觀察能力、動手操作能力和分析概括能力等。
情感目標:讓學生在學習過程當中養(yǎng)成互相幫助、團結協(xié)作的良好品德。
教學準備:圓形紙片、彩筆、各種卡片。
教學過程:
一、創(chuàng)設情境,激發(fā)興趣
孫悟空有3根一模一樣的甘蔗,小猴子貝貝、佳佳、丁丁看見了,一哄而上,叫嚷著要吃甘蔗。孫悟空說: “好,貝貝分第一根甘蔗的,佳佳分第二根甘蔗的,丁丁分第三根甘蔗的!必愗、佳佳聽了,連忙說:“孫大圣,不公平,我們要分得和丁丁的同樣多。”孫悟空真的分得不公平嗎?(學生思考片刻)
【通過學生耳熟能詳?shù)娜宋飳υ,給學生設計一個懸念,抓住學生的好奇心理,由此激發(fā)學生的學習興趣!
二、動手操作 、導入新課
師:我們也來分分看。(學生拿出準備好的圓形紙片。)師:我們把三張紙片看成三塊餅,大家比比看,每人的三塊餅大小相等嗎?請拿出第一塊餅,我想要一塊,而且大小要是第一塊餅的一半,你能做到嗎?你給我的為什么是這塊餅的一半呢?用分數(shù)怎么表示呢?我現(xiàn)在想要兩塊,而且大小要跟剛才給我的餅一樣大,你又能做到嗎?用分數(shù)怎樣表示呢?我如果想要四塊,大小跟前兩次給我的一樣,你還能做到嗎?這次用分數(shù)又該怎樣表示呢?這三個分數(shù)大小相等嗎?為什么呢?這節(jié)課,我們就來研究這個數(shù)學問題。
【通過學生的動手操作,初步感知三個分數(shù)的大小相等,為尋找原因設置懸念,再次激發(fā)學生的學習興趣!
三、觀察對比, 由“數(shù)”變 “式”
你們三次給我的餅大小相等嗎?那么這三個分數(shù)大小怎樣?可以用怎樣的式子表示?(==)(從這里你能看出,孫悟空分甘蔗,分得公平嗎?)
四、概括分析,由“式”變 “語”
、庇^察一下這個式子,3個分數(shù)有什么不同?有什么地方相同?分數(shù)的大小為什么會不變呢?要弄清楚這個問題,我們必須先研究分數(shù)的分子、分母是怎樣變化的。
、蚕葟淖笸铱矗窃鯓幼?yōu)榕c它相等的的?
(1)分母乘2,分子乘2。
根據(jù)分數(shù)的意義,""表示把單位"1"平均分成2份,取其中的1份,而現(xiàn)在把單位"1"平均分成4份,也就是把原兩份中的每一份又平均分成2份, 所以現(xiàn)在平均分成了2×2=4(份),現(xiàn)在要得跟原來的同樣多,必須取幾份?[1×2=2(份)]==
即原來把單位"1"平均分成2份,取1份,現(xiàn)在把平均分的份數(shù)和取的份數(shù)都擴大2倍,就得到。與的大小相等,分數(shù)值沒變。
(2)由到,分子、分母又是怎樣變化的?(把平均分的份數(shù)和取的份數(shù)都擴大了4倍。)==
(3)誰能用一句話說出這兩個式子的變化規(guī)律?
、吃購挠彝罂
(1) 是怎樣變化成與之相等的的?
原來把單位"1"平均分成4份,取其中的2份,現(xiàn)在把同樣的單位"1"平均分成2份,即把原來的.每兩份合并成 1份,現(xiàn)在要取得跟原來的同樣多,只需取幾份?[2÷2=1(份)]也就是現(xiàn)在把平均分的份數(shù)和取的份數(shù)都縮小了2倍,得到,分數(shù)的大小沒有變。
。剑
(2) 又是怎樣變成的?(把平均分的份數(shù)和取的份數(shù)都縮小了4倍。)
。剑
(3)誰能用一句話說出這兩個式子的變化規(guī)律?
、淳C合以上兩種變化情況,誰能用一句話概括出其中的規(guī)律?你覺得有什么要補充的嗎?(不能同時乘或除以0)為什么?
、颠@就是今天我們所學的“分數(shù)的基本性質”(板書課題,出示“分數(shù)的基本性質”)。
(1)理解概念。
學生讀一遍,你認為哪幾個字特別重要?(相同的數(shù)、0除外)相同的數(shù),指一些什么數(shù)?為什么零除外?
(2)瘃木鳥診所。(請說出理由)
分數(shù)的分子和分母同時乘或者除以相同的數(shù),分數(shù)的大小不變。( )
分數(shù)的分子和分母同時乘或者除以一個數(shù)(零除外),分數(shù)的大小不變。( )
分數(shù)的分子和分母同時乘或者除以相同的數(shù)(零除外),分數(shù)的大小不變。( )
、缎〗Y。
從判斷題中我們可以看出,分數(shù)的基本性質要注意什么?學到這兒,大家想一想,我們以前學過的什么性質跟分數(shù)的基本性質類似?誰能用整數(shù)除法中商不變的性質來說明分數(shù)的基本性質?
【此過程主要由學生通過觀察、比較,得出這三個分數(shù)大小相等的規(guī)律,由此牽引到其他的有同等規(guī)律的分數(shù)中,從而引出分數(shù)的基本性質:分子、分母是同時變化的,是同向變化的(是擴大都擴大,是縮小都縮小),是同倍變化的(擴大或縮小的倍數(shù)相同)。只有這樣變化,分數(shù)的大小才不會變!
五、鞏固練習
⒈卡片練習:
、沧鯬96“練一練”1、2。
、橙の队螒颍
數(shù)學王國開音樂會,分數(shù)大家族的節(jié)目是女聲大合唱,只有幾分鐘就要演出了,請大家趕緊幫合唱隊的成員按要求排好隊。
要求:第一排是分數(shù)值等于的,第二排是分數(shù)值等于的,還有一位同學是指揮,他是誰?你是怎樣想的?
【通過練習,讓學生加深對分數(shù)的基本性質的理解,為下節(jié)課分數(shù)的基本性質的應用打好堅實的基礎!
六、課堂總結
這節(jié)課你學到了什么?什么是分數(shù)的基本性質?你是怎樣理解的?
七、布置作業(yè)
做P97練習十八2。
分數(shù)的基本性質教學設計12
【教學內容】:
【教學目標】:
1、使學生理解和掌握分數(shù)的基本性質,并會應用分數(shù)的基本性質把不同分母的分數(shù)化成分母相同而大小不變的分數(shù)。
2、通過猜想、驗證、歸納、總結等活動,讓學生經歷分數(shù)的基本性質的探究過程,體會舉具體事例、數(shù)形結合的思考方法,感受抽象、推理的基本數(shù)學思想。
3、在自主探究與合作交流的過程中,感受數(shù)學知識之間的聯(lián)系,激發(fā)學生探究學習的興趣,提高學生發(fā)現(xiàn)問題的能力。
【教學重點】:經歷質疑、猜想、驗證、觀察、歸納的學習過程,探究分數(shù)的基本性質。
【教學難點】:理解和掌握分數(shù)的基本性質。
【教學方法】:
本節(jié)課我綜合采用了談話法,情境創(chuàng)設法、引導探究法、直觀演示法,組織學生經歷觀察,猜測,得出結論。
【學法指導】:
為了有效的達成上述教學目標,秉著新課程標準的精神指導,在整個教學活動中力求充分體現(xiàn)學數(shù)學就是做數(shù)學,數(shù)學教學就是數(shù)學活動的教學的理念,以學生為主體,以學生發(fā)展為本。在本節(jié)課教學中,我主要采用觀察發(fā)現(xiàn)法、動手操作法、舉例驗證法。引導學生靜心傾聽、認真操作、積極思考、大膽表達,通過動手實踐、自主探究、合作交流等多種方式獲得廣泛的數(shù)學活動經驗。
【教學準備】:
1、媒體準備:白板
2、資源準備:PPT
【資源運用】:
1、導入——課件出示問題-——喚醒舊知
2、探究新知——PPT課件——突破重點、分解難點
3、拓展延伸
【教學過程】:
一、聯(lián)系舊知,質疑引思。
1、在自然數(shù)的范圍內,可以找到兩個大小相等但各個數(shù)位上數(shù)字又都不相同的自然數(shù)嗎?
2、在小數(shù)的范圍內,可以找到兩個大小相等但各個數(shù)位上數(shù)字又都不相同的小數(shù)嗎?
3、在分數(shù)的范圍內,可以找到兩個大小相等但分子和分母又都不相同的分數(shù)嗎?
誰能說一個與《分數(shù)的基本性質》教學設計
【喚醒學生已有知識經驗而且引發(fā)學生的數(shù)學思考,為主動探究新知積聚動力。】
二、自主操作,驗證猜想
1、初步驗證
。1)提出問題
誰能說一個與《分數(shù)的基本性質》教學設計
如果讓你證明他們確實和《分數(shù)的基本性質》教學設計
。2)匯報方法
2、深入驗證:
(1)在紙上寫上一組你認為可能相等的分數(shù);
。2)用你喜歡的方法來證明。
(3)學生操作。
(4)匯報交流。
3、概括性質,深化理解
。1)在操作的過程中,你有什么發(fā)現(xiàn)?分子分母怎樣變化分數(shù)的大小才不變?
(2)歸納概括,總結規(guī)律,揭示課題。
。3)根據(jù)我們以前學過的分數(shù)與除法的關系,以及整數(shù)除法中商不變的性質,來說明分數(shù)的.基本性質嗎?
4、運用規(guī)律,完成例2。
。1)理解題意
。2)要把他們化成分母是12而大小不變的分數(shù),分子應該怎么變化?變化的根據(jù)是什么?
。3)獨立完成,交流匯報
【給學生提供開放的探究空間,滿足學生的探索欲望。】
三、知識應用,鞏固提升
1、判斷
。1)分數(shù)的分子、分母同時乘以或除以一個數(shù),分數(shù)的大小不變。
。2)兩個分數(shù)的分子、分母都不相同,這兩個分數(shù)一定不相等。
。3)《分數(shù)的基本性質》教學設計
2、五年級有《分數(shù)的基本性質》教學設計
3、把《分數(shù)的基本性質》教學設計
才能使分數(shù)的大小不變?
四、回顧總結,完善認知
通過本節(jié)課的學習,你有什么收獲?
【教學反思】:
1、課前準備不足,我用的20xx版做的,結果上課電腦是xxxx年版本的,展臺沒有試,影響教學流程。
2、教學機智不足,沒有關注學情,總想到20分鐘的課,時間短,有些趕,知識落實不夠扎實。
3、課堂提問語言不夠準確精煉,課堂評價不夠豐富、準確。例如開課語及結束語言有歧義。
分數(shù)的基本性質教學設計13
教學目標:
情感態(tài)度:培養(yǎng)學生觀察、比較、抽象、概括的邏輯思維能力,并且滲透事物間相互聯(lián)系,發(fā)展變化的辯證唯物主義觀點。
知識技能:理解分數(shù)的基本性質,并且能夠靈活應用。
過程方法:動手操作、觀察、討論
教學重、難點:理解并掌握分數(shù)的基本性質并靈活應用。
教具準備:自制多媒體課件、圖(2組)、拼圖畫一幅、實物投影儀。
學具準備:拼圖12組。
教學設計理念:
《新課標》要求,讓學生在動手操作中觀察、思考,在生動具體的情境中學習數(shù)學,參與知識的發(fā)現(xiàn)過程。在教學分數(shù)的基本性質時,選擇了學生喜聞樂見的游戲形式,在學生人人參與的教學情境中,讓學生發(fā)現(xiàn)問題——討論問題——解決問題。力求通過學生動手實踐,自主探索和合作交流的學習方式,新知識的教學,訓練學生思維,引導學生把所學數(shù)學知識應用于實際中。感受數(shù)學的價值,本課設計完全從學生發(fā)展為本,在教學中大膽的把課堂還給學生,讓學生成為課堂真正的主人。
教學過程:
一、 創(chuàng)設情境,激趣導入。
設計意圖:讓學生在喜聞樂見的游戲情境中,以濃厚的興趣參與學習,激發(fā)學生探索數(shù)學問題欲望,并訓練學生小組合作學習的方法和習慣。
師:請看這幅拼圖漂亮嗎?老師這還有三幅漂亮的圖片(投影展示)可愛的青蛙,朝氣彭勃的太陽,誘人的蘋果,用你們靈巧的雙手能不能把他們拼出來?請小組合作完成。同學們,準備好了嗎?我宣布:拼圖比賽現(xiàn)在開始。
請看拼圖要求:1、用所給材料拼成三個完全一樣圖形。
2、用分數(shù)表示陰影部分占整幅圖的幾分之幾,并寫出來。
二、合作交流,探究規(guī)律。
設計意圖:讓學生在具體的情境中充分利用現(xiàn)有資源,增強學生的學習興趣,既有張揚個性的獨立思考,又有發(fā)揮集體力量的小組合作學習,培養(yǎng)學生敢于探索的精神與大膽嘗試的能力,同時讓學生選擇自己喜歡的方式,既尊重了學生,又激發(fā)了學生的學習興趣,體現(xiàn)了主體性。
。ㄒ唬┢磮D,寫分數(shù)。
。1)教師組織小組活動,并巡視,參與,指導小組活動。學生拼好圖后寫出分數(shù)。
。2)匯報優(yōu)勝組介紹經驗,并展示作品。(體會小組合作的有效性)教師貼圖并板書分數(shù)。( = = )
(二)找分數(shù)間的大小關系。
。1)師:請同學們用自己喜歡的`方法找一找每組中三個分數(shù)的大小關系,學生獨立思考后與同桌交流方法。
。2)匯報:每組中三個分數(shù)大小相等。
比較方法。(1)看圖比較(2)化小數(shù)比較(3)利用商不變的性質比較(4)……
。ㄈ┨骄恳(guī)律
(1)每組中三個分數(shù)看似不同,實質大小相等,它們之間到底有什么聯(lián)系?小組討論探究規(guī)律。
。2)交流自己的發(fā)現(xiàn)。①每組中三個分數(shù)平均分的份數(shù)不同取的分數(shù)也不同?②分子,分母都擴大了2倍(3倍)③……
。3)師:分數(shù)的分子和分母怎樣變化時,分數(shù)的大小才會不變,學生自由發(fā)言,教師給予肯定和鼓勵。
(4)師結合圖依據(jù)分數(shù)的意義講解變化規(guī)律。
。5)小結分數(shù)的基本性質:強調“相同”“同時”組織討論:“相同的數(shù)”可以是哪些數(shù)?
。ㄋ模⿲Ρ确謹(shù)的基本性質和商不變的性質。
學生對比,說出兩個性質間的區(qū)別與聯(lián)系。
三、應用。
設計意圖:本環(huán)節(jié)所設計是由易到難,緊扣本課的重難點,練習具有針對性、實用性、開放性。通過變式練習讓學生的思維得到訓練,激發(fā)探究熱情,培養(yǎng)創(chuàng)新能力。
1、填空
。1)學生獨立思考。(2)交流口答,并說明依據(jù),同時訓練學生應用所學知識解決實際問題的能力。
2、比較 和 的大小。
四、游戲"找朋友”。
設計意圖:游戲的情境,形式活潑,讓學生通過大小相等的分數(shù)找到自己的朋友。游戲規(guī)則新穎而恰當,既鞏固新知又體會到數(shù)學與生活的密切聯(lián)系。
同學們拿出課前老師發(fā)給你的紙,紙上所寫分數(shù)大小相等的同學,你們是“好朋友”。請學生讀自己的分數(shù),與他所讀分數(shù)大小相等的同學舉起來確定后手拉手離場。
,五年級數(shù)學分數(shù)的基本性質教學設計
分數(shù)的基本性質教學設計14
教學內容:人教版新課標教科書小學數(shù)學第十冊75~77頁例
1、例2.教學目標:1知識與技能目標:
(1)經歷探索分數(shù)的基本性質的過程,理解分數(shù)的基本性質。
。2)能運用分數(shù)的基本性質,把一個分數(shù)化成指定分母(或分子)而大小不變的分數(shù)。
2、過程與方法目標:
。1)經歷觀察、操作和討論等學習活動,并在探索過程中,能進行有條理的思考,能對分數(shù)的基本性質做出簡要的、合理的說明。(2)培養(yǎng)學生的觀察、比較、歸納、總結概括能力。
。3)能根據(jù)解決的需要,收集有用的信息進行歸納,發(fā)展學生歸納、推理能力。
3、情感態(tài)度與價值觀目標:
。1)經歷觀察、操作和討論等數(shù)學學習活動,使學生進一步體驗數(shù)學學習的樂趣。(2)鼓勵學生敢于發(fā)現(xiàn)問題,培養(yǎng)學生敢于解決問題的學習品質。
教學重點:探索、發(fā)現(xiàn)和掌握分數(shù)的基本性質,并能運用分數(shù)的基本性質解決問題。教學難點:自主探究、歸納概括分數(shù)的基本性質。教學準備:學生準備一張正方形的紙,課件教學過程:
一、故事導入。
師:同學們,你們喜歡看《喜羊羊與灰太狼》的動畫片嗎?生:喜歡。
師:老師這里有一個慢羊羊分餅的故事,羊村的小羊最喜歡吃村長做得餅。一天,村子做了三塊大小一樣的餅分給小羊們吃,他把第一塊餅的1/2分給懶羊羊,再把二塊餅的2/4分給喜羊羊,最后把第三塊餅的4/8分給美羊羊,懶羊羊不高興地說:"村長不公平,他們的多,我的少!保◣熯呎f邊板書分數(shù))同學們,村長公平嗎?他們那個多,那個少?
生:公平,其實他們分得一樣多。
師:到底你們的猜想是否正確呢?讓我們來驗證一下!
二、探究新知,解決問題:1、小組合作,驗證猜想:(1)玩一玩,比一比.(讀要求)師:我們現(xiàn)在小組合作來玩一玩,比一比.(出示要求)
師:(讀要求)現(xiàn)在開始.(學生匯報)師:你們發(fā)現(xiàn)了什么?
生1:老師,我們通過比較這三幅圖的陰影部分完全重合,那這三個分數(shù)都相等。(師在分數(shù)上畫符號)
生2:老師,我們通過比較這三幅圖的陰影部分完全重合,那這三個分數(shù)都相等。(出示課件演示)
2、初步概括分數(shù)的基本性質.(2)算一算,找一找.師:(提問)同學們觀察一下,這三個分母什么變了?什么沒變?生1:它們的分子和分母變化了,但分數(shù)的大小沒變。生2:它們的分子和分母變化了,但分數(shù)的大小沒變。
師:這三個分數(shù)的分子和分母都不相同,為什么分數(shù)的大小都相等呢?同學們思考一下。
生1:它們的分子和分母都乘相同的數(shù)。生2:它們的分子和分母都除以相同的數(shù)。
師:那同學們的猜想是否正確呢?它們的變化規(guī)律又是怎樣呢?我們小組合作觀察討論。并把發(fā)現(xiàn)的規(guī)律寫下來。
。ǔ鍪菊n件)
小組匯報:(歸納規(guī)律)
師:哪一組把你們討論的結果匯報一下,從左往右觀察,你們發(fā)現(xiàn)了什么?生1:從左往右觀察,我們發(fā)現(xiàn)1/2的分子和分母同時乘2,分數(shù)的大小不變。生2:從左往右觀察,我們發(fā)現(xiàn)1/2的分子和分母同時除以4,分數(shù)的.大小不變。師:你們是這樣想的,既然這樣,那么分子和分母同時乘5,分數(shù)的的大小改變,嗎?生:不變。
師:同時乘
6.8呢?生:不變。
師:那你們能不能根據(jù)這個式子來總結一下規(guī)律呢?
生1:一個分數(shù)的分子和分母同時乘相同的數(shù),分數(shù)的大小不變。生2:一個分數(shù)的分子和分母同時乘相同的數(shù),分數(shù)的大小不變。師:(板書)誰來舉這樣一個例子?生:......
師:這樣的例子,我們可以舉很多,剛才我們是從左往右觀察,從右往左觀察,哪一組匯報一下。
生:從右往左觀察,我們發(fā)現(xiàn)了,4/8的分子和分母同時除以2,得到了2/4,分數(shù)2/4的分子和分母同時除以2得到分數(shù)1/2,他們的分數(shù)的大小不變。
生:從右往左觀察,我們發(fā)現(xiàn)了,4/8的分子和分母同時除以2,得到了2/4,分數(shù)2/4的分子和分母同時除以2得到分數(shù)1/2,他們的分數(shù)的大小不變。(師課件演示)
師:你們是這樣想的,既然這樣,那么分子和分母同時除以5,分數(shù)的的大小改變,嗎?生:不變。
師:同時除以
6.8呢?生:不變。
師:那你們能不能根據(jù)這個式子來總結一下規(guī)律呢?
生1:一個分數(shù)的分子和分母同時除以相同的數(shù),分數(shù)的大小不變。生2:一個分數(shù)的分子和分母同時除以相同的數(shù),分數(shù)的大小不變。師:(板書)誰來舉這樣一個例子?生舉例
。场娬{規(guī)律
師:我把兩句話合成了一句話,根據(jù)分數(shù)的這一變化規(guī)律,你認為下面的式子對嗎?(課件出示)
生:回答,錯的,因為分數(shù)的分子、分母沒有乘相同的數(shù)。師:(在黑板上圈出)對必須乘相同的數(shù)。
生:錯,因為分子乘2,分母沒有乘2,分子和分母沒有同時乘。師:(在黑板上圈出)對必須同時乘。
師:分數(shù)的分子、分母都乘或除以相同的數(shù),分數(shù)的大小不變,這里“相同的數(shù)”是不是任何數(shù)都可以呢?我們看一看(課件出示)師:這個式子成立嗎?
生:不成立,因為0不能做除數(shù),4乘0得0是分母,分母相當于除數(shù),所以這個式子是錯誤的。
師:我不乘0,我除以0可以么?生:不成立,因為0不能作除數(shù)。
師:同學們不錯,這兩個式子都不成立,我們剛才總結的分子、分母同時乘或除以相同的數(shù),這相同的數(shù)必須(生:0除外)(師板書)
師:這一變化規(guī)律就是我們這節(jié)課學習的內容,分數(shù)的基本性質,(板書課題)在這一規(guī)律里,需要我們注意的是:(生:同時、相同的數(shù)、0除外)
師:我相信懶羊羊學習了分數(shù)的基本性質,那就不會生氣了它知道(出示課件)一樣多,咱們同學們千萬不要犯它同樣的錯誤了,我們把這一條規(guī)律讀兩遍,并記下它。(生讀規(guī)律)
師:學習了分數(shù)的基本性質,我想利用你們的火眼金睛,當一當小法官(出示課件)
生:(讀題,用手勢表示對、錯,并說出原因)
三、運用規(guī)律,自學例題1、學習例2師:這個分數(shù)的基本性質特別的有用,我們可以根據(jù)分數(shù)的基本性質把一個分數(shù)化成和它相等的另外一個分數(shù),我們一起去看一看。(課件出示例題)學生讀題
師:分子、分母應該怎樣變化?變化的依據(jù)是什么?小組內討論一下(學生討論)師:誰來說一說?
生:2/3的分子分母同時乘4得到8/12,變化的依據(jù)是分數(shù)的基本性質。生:10/24的分子和分母同時除以2,得到5/12,變化的依據(jù)是分數(shù)的基本性質。師:回答得不錯,自己獨立完成這題。
師:(巡視)請一名學生說出答案,(生說,師出示答案)
四、分數(shù)的基本性質與商不變的性質
師:分數(shù)的基本性質作用可大了,那大家回想一下,這與我們以前學習的除法里面哪一個性質相似?生:商不變的性質。
師:除法里商不變的性質是怎么說的?
生:被除數(shù)和除數(shù)同時擴大或縮小相同的倍數(shù)(0除外),商不變。師:你們能否用商不變的性質來說明分數(shù)的基本性質?小組內討論一下。
小組討論
師:哪一組把討論的結果匯報一下。
生:在分數(shù)里,被除數(shù)相當于分子,除數(shù)相當與分母,被除數(shù)與除數(shù)同時擴大或縮小相同的倍數(shù),就相當于分子、分母同時乘或除以相同的數(shù)(0除外),因此,商不變就相當于分數(shù)的大小不變。(師板書)
師:既然能用商不變的性質來說一說分數(shù)的基本性質,那我們來小試牛刀。(出示課件)
生:5除以10等于1/2,當被除數(shù)5縮小5倍就相當于分子除以5,分子除以5,分母也除以5,所以10除以5得2.生:12除以24等于4/8,當除數(shù)24除以3得8就相當于分母除以3,分母除以3分子也除以3,12除以3得4.五、課堂運用。1、跨欄高手
師:同學們的回答簡直太棒了,那你們有資格讓老師把你們帶到運動場去當跨欄高手了。(出示課件)
師:(學生回答三題)同學們這么大的數(shù)一下子就得出結果,有什么秘訣嗎?生:用大數(shù)除以小數(shù),就知道分母、分子擴大了幾倍.2、拓展延伸:
師:當了跨欄高手,我們的成績非常的好,那我們就到羊村去玩吧,來到羊村,慢羊羊讓大家當村長,解決難題,你們敢接招嗎?生:敢
師:(出示課件)那我們就要小組為單位,開始玩游戲。小組匯報結果
六、撿拾碩果
看到同學們這么自信的回答,老師知道今天大家的收獲不少,說一說這節(jié)課你都收獲了哪些?生說
師:同學們,表現(xiàn)得太好了,這節(jié)課,老師從你們的身上也學到了許多,謝謝你們,下課!
分數(shù)的基本性質教學設計15
教學內容
分數(shù)的基本性質
教材第75頁的例1,第76頁“做一做”的第1題及第77頁練習十四的第1一5題。
教學目標
1 、通過教學,使學生歸納概括出分數(shù)的基本性質,并能理解分數(shù)基本性質,運用分數(shù)基本性質解題。
2 、培養(yǎng)學生的遷移類推能力、抽象概括能力和觀察能力。
3 、讓學生體會到數(shù)學知識間的內在聯(lián)系,感受學習數(shù)學知識的價值。
重點難點
抽象概括出分數(shù)的基本性質。
教具準備
每人3張同樣的正方形或長方形紙片。
教學過程
。ㄒ唬⿲
1、直接口答下面各題的商,說說是怎樣想的?根據(jù)什么知識?
120 ÷20 =(12O×3)÷(30 ×3)=(120 ÷10)÷(30 ÷10)=
。ǘ┙虒W實施
1 、教學教材第75頁的例1 。
讓學生拿3張同樣的正方形或長方形紙片,分別對折一次、兩次、四次,平均分成2份、4份、8份,涂上顏色,分別用分數(shù)表示涂色部分。
提示:你發(fā)現(xiàn)了什么?板書:= =為什么相等?2 。引導學生觀察它們的分子、分母各是按照什么規(guī)律變化的?學生以小組為單位討論,請代表發(fā)言。
隨著學生匯報,老師板書。
。◤淖笸矣^察)(從右往左觀蔡)
3 、提問:你還能舉出這樣的例子嗎?
學生舉例,老師分別板書出來。
4 、觀察以上例子,你得出什么結論?(學生討論,匯報。)板書:分數(shù)的分子和分母同時乘或者除以相同的數(shù)(0除外),分數(shù)的大小不變。
提問:為什么0要除外?(學生討論)
小結:分子和分母如果都乘上0,則分數(shù)成為,而分數(shù)的`分母不能為O;又因為0不能作除數(shù),所以分數(shù)的分子和分母也不能同時除以O 。
5 、提問:你能不能根據(jù)分數(shù)與除法的關系和商不變的性質來說明分數(shù)的基本性質?
6 、完成教材第76頁“做一做”的第1題。說一說自己是怎樣想的?學生根據(jù)分數(shù)的基本性質思考并說明思路。
7 、完成教材第77頁練習十四的第1題。
學生先獨立涂色,然后比較大小并說明理由。
8 、完成教材第77頁練習十四的第2題。學生獨立完成,說一說是怎樣比較的?可以把化成,也可以把化成,再比較。
9 、完成教材第77頁練習十四的第3題。
學生兩人一組,由一人說一個分數(shù),另一個人說出一個相等的分數(shù)。
10 。完成教材第77頁練習十四的第4題。
引導學生先應用分數(shù)的基本性質,判斷哪幾個分數(shù)是相等的,然后在直線上把這個點畫出來。
老師啟發(fā)學生觀察,推算出每個分數(shù)中分子與分母可以同時除以幾,得到一個與原分數(shù)相等的分數(shù)。
11 、完成教材第77頁練習十四的第5題。
進行口答練習。
(四)思維訓練
1 、一個分數(shù)的分母不變,分子乘3,這個分數(shù)的大小有什么變化嗎?如果分子不變,分母除以5呢?
2 、在下面的括號里填上適當?shù)臄?shù)。
9÷15 = = = 6÷( )=( )÷6
。ㄎ澹┱n堂小結
通過本節(jié)的學習,知道了什么是分數(shù)的基本性質,并會應用分數(shù)的基本性質解決一些簡單的數(shù)學問題。
【分數(shù)的基本性質教學設計】相關文章:
《分數(shù)基本性質》教學設計07-01
分數(shù)的基本性質教學設計04-05
《分數(shù)的基本性質》教學設計范文(精選11篇)06-09
《比例的基本性質》教學設計05-12
《分數(shù)的意義和性質》教學設計03-21
分數(shù)的意義和性質教學設計11-09
分數(shù)的意義和性質教學設計通用04-06