亚洲v欧美v国产v在线成_制服丝袜中文字幕丝袜专区_一区二区三区韩国电影_激情欧美一区二区中文字幕

我要投稿 投訴建議

考研數(shù)學(xué)應(yīng)用題解題技巧

時間:2021-01-15 19:23:35 考研試題 我要投稿

2016考研數(shù)學(xué)應(yīng)用題解題技巧

  歷年考研試題中都涉及數(shù)學(xué)實(shí)際應(yīng)用的問題,這是考察的重點(diǎn)和關(guān)鍵。下面就以考研真題為例,總結(jié)歸納了函數(shù)的極值和最值、積分、微分方程和概率等考研中數(shù)學(xué)應(yīng)用題的四大類型以及各個類型問題的解法。

2016考研數(shù)學(xué)應(yīng)用題解題技巧

  函數(shù)的極值和最值模型

  函數(shù)的極值和最值的應(yīng)用問題主要分為一元函數(shù)和多元函數(shù)的極值和最值的應(yīng)用,解決這類問題的思路是:第一根據(jù)實(shí)際問題中的數(shù)量關(guān)系列出函數(shù)關(guān)系式及求出函數(shù)的定義域;第二利用求函數(shù)極值和最值的方法求解。

  例如:某廠家生產(chǎn)的一種產(chǎn)品同時在兩個市場銷售,售價分別為p1,p2;銷售量分別為q1和q2;需求函數(shù)分別為q1=24-0.2p1,q2=10-0.05p2;總成本函數(shù)為C=35+40(q1+q2)。試問:廠家如何確定兩個市場的售價,能使其獲得的總利潤最大?最大總利潤是多少?

  分析:這是一個典型的二元函數(shù)求最值問題。首先要根據(jù)題意求出總利潤函數(shù):總利潤=總收益-總成本;其次求出函數(shù)的定義域;最后根據(jù)二元函數(shù)求最值的方法求解即可。

  積分模型

  在積分的應(yīng)用過程中關(guān)鍵要解決好兩個問題:一是什么樣的量可以用積分來表達(dá);二是用什么樣的積分表達(dá),即確定積分區(qū)域和被積表達(dá)式。

  例如:某建筑工程打地基時,需用汽錘將樁打進(jìn)土層. 汽錘每次擊打,都將克服土層對樁的阻力而作功。設(shè)土層對樁的阻力的大小與樁被打進(jìn)地下的深度成正比(比例系數(shù)為kk>0)。汽錘第一次擊打?qū)洞蜻M(jìn)地下am。根據(jù)設(shè)計(jì)方案,要求汽錘每次擊打樁時所作的功與前一次擊打時所作的功之比為常數(shù)r(0

  問: (1) 汽錘擊打樁3次后,可將樁打進(jìn)地下多深?(2) 若擊打次數(shù)不限,汽錘至多能將樁打進(jìn)地下多深?(注:m表示長度單位米)

  分析:本題屬變力做功問題,可用定積分進(jìn)行計(jì)算,而擊打次數(shù)不限,相當(dāng)于求數(shù)列的極限。

  微分方程模型

  應(yīng)用微分方程解決實(shí)際問題,其實(shí)就是建立微分方程數(shù)學(xué)模型,通過建立微分方程、確定定解條件、求解及對解的.分析可以揭示許多自然界和科學(xué)技術(shù)中的規(guī)律。應(yīng)用微分方程解決具體問題時,首先將實(shí)際問題抽象,建立微分方程,并給出合理的定解條件;其次求解微分方程的通解及滿足定解條件的特解;最后由所求得的解或解的性質(zhì),回到實(shí)際問題。

  例如:現(xiàn)有一質(zhì)量為9000kg的飛機(jī),著陸時的水平速度為700km/h。經(jīng)測試,減速傘打開后,飛機(jī)所受的總阻力與飛機(jī)的速度成正比(比例系數(shù)為k=6.0×106)。問從著陸點(diǎn)算起,飛機(jī)滑行的最長距離是多少? 注:kg表示千克,km/h表示千米/小時。

  分析:本題是以運(yùn)動力學(xué)為背景的數(shù)學(xué)應(yīng)用題,可通過利用牛頓第二定理,列出關(guān)系式后再解微分方程即可。

  概率模型

  關(guān)于概率論的應(yīng)用題主要集中在古典概型、隨機(jī)變量的分布以及隨機(jī)變量的數(shù)字特征等方面。應(yīng)用概率論的知識解決具體問題時,首先要分析實(shí)際問題,找出隨機(jī)變量的關(guān)系及其分布;下來是列出它們的函數(shù)關(guān)系,利用概率論的有關(guān)知識求解。

  例如:設(shè)某企業(yè)生產(chǎn)線上產(chǎn)品的合格率為0.96,不合格產(chǎn)品中只有3/4的產(chǎn)品可進(jìn)行再加工,且再加工的合格率為0.8,其余均為廢品。已知每件合格品可獲利80元,每件廢品虧損20元,為保證該企業(yè)每天平均利潤不低于2萬元,問該企業(yè)每天至少應(yīng)生產(chǎn)多少產(chǎn)品?

  分析:本題為概率論中的數(shù)學(xué)期望在經(jīng)濟(jì)中的應(yīng)用,有關(guān)數(shù)字特征的應(yīng)用題主要是隨機(jī)變量函數(shù)的數(shù)學(xué)期望、方差等,求解這類問題的關(guān)鍵是找出函數(shù)關(guān)系。根據(jù)題設(shè)列出方程求解。

【考研數(shù)學(xué)應(yīng)用題解題技巧】相關(guān)文章:

考研數(shù)學(xué)解題技巧09-12

2017考研數(shù)學(xué)選擇題解題技巧06-26

考研數(shù)學(xué)綜合題的解題技巧10-12

考研數(shù)學(xué)單選題解題技巧11-22

考研政治解題技巧01-27

物理中考應(yīng)用題的解題技巧01-28

2018考研政治解題技巧06-16

考研政治的解題技巧09-23

考研英語閱讀解題技巧11-21