- 相關(guān)推薦
《數(shù)學(xué)史》讀后感
認(rèn)真品味一部名著后,相信你一定有很多值得分享的收獲,需要回過(guò)頭來(lái)寫一寫讀后感了。那么你真的會(huì)寫讀后感嗎?下面是小編幫大家整理的《數(shù)學(xué)史》讀后感,希望能夠幫助到大家。
《數(shù)學(xué)史》讀后感1
數(shù)學(xué)是一門枯燥的學(xué)科,我從小就這樣認(rèn)為。但是通過(guò)這個(gè)寒假,這本《這才是好讀的數(shù)學(xué)史》,打開了知識(shí)文化的一扇大門,讓我對(duì)數(shù)學(xué)有了更深入的了解與思考,并且領(lǐng)悟到了其中的魅力。
數(shù)學(xué)的歷史非常悠久,從很久很久以前就已經(jīng)有了數(shù)學(xué)。那時(shí)候的人們剛剛接觸到了它,而隨著時(shí)代的變遷,數(shù)學(xué)的文化越來(lái)越博大精深。正是因?yàn)槟切﹤ゴ蟮臄?shù)學(xué)家們所做出的巨大貢獻(xiàn),才讓后代的人類將數(shù)學(xué)發(fā)展得越來(lái)越好。例如一位亞歷山大的希臘數(shù)學(xué)家歐幾里得,他從一小部分公理中總結(jié)了歐幾里德幾何的原理,還寫了另外五部關(guān)于球面幾何、透視、數(shù)論、圓錐截面和嚴(yán)謹(jǐn)性的作品。歐幾里得因此被人們稱為“幾何學(xué)之父”。
數(shù)學(xué)文化奇幻無(wú)窮。最讓我印象深刻的便是阿拉伯?dāng)?shù)學(xué)文化。阿拉伯?dāng)?shù)學(xué)家不僅讓代數(shù)成為數(shù)學(xué)的重要組成部分,而且還在幾何學(xué)和三角學(xué)方面做出了重要的貢獻(xiàn)。同時(shí),“帕斯卡三角形”也就是“楊輝”三角也被他們所了解。阿拉伯?dāng)?shù)學(xué)文化的特點(diǎn)則是能夠從其他數(shù)學(xué)的知識(shí)中汲取到最有用的精華,并且發(fā)展它。
數(shù)學(xué)中有很多被數(shù)學(xué)家們所發(fā)現(xiàn)和證明的公式、定義,我們都認(rèn)為那是枯燥的、繁瑣的。但是數(shù)學(xué)有自己的靈魂與存在的意義,普羅魯克斯曾說(shuō)過(guò)“數(shù)學(xué)賦予它所發(fā)現(xiàn)的真理以生命;它喚起心神,澄清智慧;它給我們的內(nèi)心思想增添光輝;它滌盡我們有生以來(lái)的蒙昧與無(wú)知。”因?yàn)橛辛藬?shù)學(xué),人類的民族發(fā)展得越來(lái)越順利;因?yàn)橛辛藬?shù)學(xué),人類的生活變化得多姿多彩……
數(shù)學(xué)的發(fā)展并不是我們想象中的那么順利,而是經(jīng)歷了無(wú)數(shù)的困難和挫折,才成為了我們現(xiàn)代的數(shù)學(xué)。它的'成就則是數(shù)學(xué)家們?nèi)杖找挂沟难芯颗c思考所造就的,讓數(shù)學(xué)真正地顯露出了它的價(jià)值。中國(guó)的數(shù)學(xué)源遠(yuǎn)流長(zhǎng),擁有著它自己的特色與意義。重大的數(shù)學(xué)定義、理論總是在繼承與發(fā)展原有的理論的基礎(chǔ)所建立起來(lái)的,它們不但不會(huì)改變?cè)镜睦碚,而且?jīng)常將最初的理論思想包含進(jìn)去。正是因?yàn)槲覀儾粩嗟貫樗⑷腱`魂力量,它才能越來(lái)越強(qiáng)大,越來(lái)越輝煌!
數(shù)學(xué)史的學(xué)習(xí)讓我們更加理解數(shù)學(xué)的意義,從而在知識(shí)的海洋中不斷發(fā)現(xiàn)、不斷進(jìn)取、不斷研究,逐漸形成對(duì)數(shù)學(xué)的熱愛!
《數(shù)學(xué)史》讀后感2
《數(shù)學(xué)史》把數(shù)學(xué)幾千年的發(fā)展?jié)饪s為這本編年史中。從希臘人到哥德爾,數(shù)學(xué)一直輝煌燦爛,名人輩出,觀念的潮漲潮落到處清晰可見。而且,盡管追蹤的是歐洲數(shù)學(xué)的發(fā)展,但并沒(méi)有忽視中國(guó)文明、印度文明和阿拉伯文明的貢獻(xiàn),是一部經(jīng)典的關(guān)于數(shù)學(xué)及創(chuàng)造這門學(xué)科的數(shù)學(xué)家們的單卷本歷史著作。讀了這本書,讓我對(duì)數(shù)學(xué)學(xué)習(xí)有了新的認(rèn)識(shí)和感悟,也讓我更深層次的了解到數(shù)學(xué)的魅力和偉大,以及對(duì)前人的崇敬。
數(shù)學(xué)源于人類的生活與發(fā)展。書中說(shuō),“人類在蒙昧?xí)r代就已具有識(shí)別事物多寡的能力,從這種原始的‘?dāng)?shù)覺(jué)’到抽象的‘?dāng)?shù)’概念的形成,是一個(gè)緩慢的,漸進(jìn)的過(guò)程!比祟悶榱吮阌谏钌a(chǎn)的需要,開始以手指頭計(jì)數(shù),手指數(shù)不夠了,開始用石頭計(jì)數(shù),結(jié)繩計(jì)數(shù),刻痕計(jì)數(shù)。又經(jīng)過(guò)幾萬(wàn)年的發(fā)展,隨著幾種文明的誕生與發(fā)展,記數(shù)系統(tǒng)在各種文明中都有了表示方式。古埃及的象形數(shù)字,巴比倫楔形數(shù)字,中國(guó)甲骨文數(shù)字,中國(guó)籌算數(shù)碼等等。
但是,為什么時(shí)至今日我們最習(xí)慣和擅長(zhǎng)使用的是十進(jìn)制計(jì)數(shù)的方式呢,難道就是因?yàn)槔蠋焸円淮淮@樣教出來(lái)的嗎?很多人可能就是這樣認(rèn)為的,或者根本并未思考過(guò)。書里寫到:“十進(jìn)制在今天的'普遍使用,只不過(guò)是解剖學(xué)上一次偶然事件的結(jié)果而已:我們中的大多數(shù)人,生來(lái)就有10個(gè)手指、10個(gè)腳趾!苯(jīng)歷過(guò)扳著手指頭數(shù)數(shù)的過(guò)程,可能十進(jìn)制早已在我們的心中留下了牢固的烙印。這就是一個(gè)知識(shí)的自然形成。
通過(guò)對(duì)書中一些知識(shí)的閱讀與思考,可以感覺(jué)到許多知識(shí)并不是那些先驅(qū)者憑空亂想出來(lái)的,是根據(jù)某種需要而研究出來(lái)的規(guī)律,而且是一些自然存在的規(guī)律,我們今天所學(xué)的知識(shí)正是這些已經(jīng)總結(jié)出來(lái)的規(guī)律。“坐標(biāo)系”這個(gè)詞,對(duì)很多人來(lái)說(shuō)可能并不陌生,即使他的數(shù)學(xué)知識(shí)已經(jīng)“還給老師”很多年了,他也許還知道什么是“經(jīng)度緯度”。為什么會(huì)出現(xiàn)這樣的現(xiàn)象呢,也許是因?yàn)楹笳咴谏钪谐霈F(xiàn)的更多一些,但其實(shí)兩者的實(shí)質(zhì)都是一樣的。一個(gè)小故事說(shuō):“笛卡爾小時(shí)候在一次晨思時(shí)看見天花板上有一只蒼蠅在爬,他的頭腦中閃現(xiàn)出智慧的火花,如果知道蒼蠅和相臨兩個(gè)墻壁的距離之間的關(guān)系,就能描述它在天花板上的位置與運(yùn)動(dòng)路線!边@個(gè)故事可能是編造的,但最終形成了我們今天所知的“笛卡爾坐標(biāo)系”。這樣的思想廣泛的應(yīng)用在天文,地理,物理等許多的學(xué)科中。
我們?cè)趯W(xué)習(xí)知識(shí)的時(shí)候是否思考過(guò)這個(gè)知識(shí)是由何而來(lái)的呢?是否注意到了在知識(shí)體系這張大網(wǎng)中,每個(gè)知識(shí)在什么位置上呢?難道我們真的可以單純的認(rèn)為每個(gè)知識(shí)都是孤立的考試對(duì)象嗎?
數(shù)學(xué)源于生活,高于生活,最終也將服務(wù)生活,運(yùn)用于生活。在一般人看來(lái),數(shù)學(xué)是一門枯燥無(wú)味的學(xué)科,因而很多人視其為畏途,從某種程度上說(shuō),這也許是由于我們的數(shù)學(xué)所教的往往是一些僵化的、一成不變的數(shù)學(xué)內(nèi)容,如果在數(shù)學(xué)教學(xué)中滲透數(shù)學(xué)史內(nèi)容而讓數(shù)學(xué)活起來(lái),這樣也許可以激發(fā)學(xué)生的學(xué)習(xí)興趣,也有助于學(xué)生對(duì)數(shù)學(xué)認(rèn)識(shí)的深化,讓更多的學(xué)生懂得數(shù)學(xué)。
《數(shù)學(xué)史》讀后感3
此書是《數(shù)學(xué)史教程》的第二版,這本書還得到了諸多數(shù)學(xué)界有望人士的高度贊揚(yáng)。嘉興學(xué)院名譽(yù)校長(zhǎng),國(guó)際數(shù)學(xué)大師陳省身先生為此書惠贈(zèng)了墨寶:了解歷史的變化是了解這門科學(xué)的一個(gè)步驟。此外,吳文俊院士也在百忙中趕寫了讀后感,對(duì)《數(shù)學(xué)史概論》一書在數(shù)學(xué)史學(xué)科研究上的肯定,并稱之“翻閱此書都會(huì)開卷有益并感到樂(lè)趣”。
數(shù)學(xué)是一門歷史性或者說(shuō)積累性很強(qiáng)的學(xué)科,重大的數(shù)學(xué)理論總是在繼承和發(fā)展原有理論的基礎(chǔ)上建立起來(lái)的,它們不僅不會(huì)推翻原有理論,而且總是包容原先的理論。所以說(shuō)數(shù)學(xué)是歷史最悠久的人類知識(shí)領(lǐng)域之一。因此也有數(shù)學(xué)史家認(rèn)為“在大多數(shù)學(xué)科里,一代人的建筑為下一代所摧毀,一個(gè)人的創(chuàng)造被另一個(gè)人所破壞,但是有些學(xué)科就像數(shù)學(xué),每一代人都在古老的大廈上添加一層樓”。
作者是按如下的數(shù)學(xué)史分期為線索進(jìn)行展開論述的:
一、數(shù)學(xué)的起源和發(fā)展;
二、初等數(shù)學(xué)時(shí)期;
1、古希臘數(shù)學(xué),2、中世紀(jì)東方數(shù)學(xué),3、歐洲文藝復(fù)興時(shí)期。
三、近代數(shù)學(xué)時(shí)期;
四、現(xiàn)代數(shù)學(xué)時(shí)期。
此書從上古的巴比倫、希臘、中國(guó)、印度、阿拉伯,以至當(dāng)代數(shù)學(xué),對(duì)于數(shù)學(xué)的貢獻(xiàn)與影響都有中肯的評(píng)論和解說(shuō)。在原始社會(huì),從原始的“數(shù)覺(jué)”到抽象的“數(shù)”概念的形成;隨著計(jì)數(shù)的慢慢發(fā)展,
出現(xiàn)了石子記數(shù)和結(jié)繩記事等記數(shù)方法;接著經(jīng)驗(yàn)算術(shù)與幾何法的發(fā)現(xiàn);再在此基礎(chǔ)上加工升華為具有初步邏輯結(jié)構(gòu)的`論證數(shù)學(xué)體系;隨之發(fā)展而來(lái)的便是近代數(shù)學(xué);之后數(shù)學(xué)的發(fā)展更是迅猛:微積分的創(chuàng)立,代數(shù)學(xué)的新生,幾何學(xué)的變革......
在很多人看來(lái)數(shù)學(xué)總是那么枯燥乏味的,沒(méi)有多大的興致看完這本書。而此書中作者不僅對(duì)數(shù)學(xué)史實(shí)有詳盡而忠實(shí)的介紹,還借助各種例子來(lái)讓讀者理解,甚至加入了很多生動(dòng)有趣的故事及奇聞?shì)W事,例如阿基米德解決皇冠難題的故事,牛頓蘋果落地的故事等等。讀之趣味盎然,大大增強(qiáng)了書本的可讀性。書中還寫到了很多著名的數(shù)學(xué)家,并就其學(xué)術(shù)成就做了概括的介紹,尤其重要成就,不惜花了很多篇幅以詳細(xì)說(shuō)明。
最后,作者還就數(shù)學(xué)與社會(huì)的關(guān)系及兩者互相之間的影響發(fā)表了論述。他精辟地闡述為:數(shù)學(xué)的發(fā)展與社會(huì)的進(jìn)步有著密切的聯(lián)系,這種聯(lián)系是雙向的,即一方面,數(shù)學(xué)的發(fā)展依賴于社會(huì)環(huán)境,受著社會(huì)經(jīng)濟(jì)、政治和文化等諸多因素的影響;另一方面,數(shù)學(xué)的發(fā)展又反過(guò)來(lái)對(duì)人類社會(huì)物質(zhì)文明和精神文明兩大方面的影響。接著,作者從數(shù)學(xué)與社會(huì)進(jìn)步,數(shù)學(xué)發(fā)展中心的遷移,數(shù)學(xué)的社會(huì)化三方面進(jìn)行了展開說(shuō)明。
我想我本是數(shù)學(xué)系的學(xué)生,多少是得對(duì)數(shù)學(xué)史有所了解。雖沒(méi)有過(guò)于仔細(xì)的拜讀,但我想通過(guò)這次翻閱還是受益匪淺的。
《數(shù)學(xué)史》讀后感4
從小到大,在學(xué)習(xí)數(shù)學(xué)的過(guò)程中,我們接觸大量的數(shù)學(xué)題,但卻對(duì)數(shù)學(xué)的歷史很少提及!稊(shù)學(xué)史》,是一本專門研究數(shù)學(xué)的歷史,娓娓道來(lái)數(shù)學(xué)從古代到先代的發(fā)展史,滿足了我的好奇,把數(shù)學(xué)的發(fā)展過(guò)程展示出來(lái)。
本書于1958年出版,作者是J.F.斯科特。書中主要闡述西方數(shù)學(xué)的發(fā)展歷史,但也專門用-章講述印度和中國(guó)的數(shù)學(xué)發(fā)展。沿著時(shí)間軸,數(shù)學(xué)的發(fā)展經(jīng)歷了從初等到高等的過(guò)程。
數(shù)學(xué)對(duì)于我來(lái)說(shuō)是一個(gè)奇妙的科目,它不僅僅是一堆數(shù)字和符號(hào)連接在一起的公式,更是時(shí)代和科技的發(fā)展與進(jìn)步。這本書讓我明白數(shù)學(xué)的起源與發(fā)展,隨著歷史的長(zhǎng)河不斷向過(guò)往延伸,我熱愛數(shù)學(xué),并不是因?yàn)樗鼛Ыo我較高的'成績(jī),而是我本身在解出一道難題時(shí)的自豪與它帶給我的成就感,我享受解題的過(guò)程,隨著時(shí)間的流逝心卻在題海中慢慢放松,變得平靜。而在對(duì)數(shù)學(xué)史了解之后,你就像身在一張地圖,但你卻清楚的知道自己的位置,尋找方向就愈加容易。
這本書很好的幫我更上一層樓,讓我懷著對(duì)數(shù)學(xué)的熱愛不斷探索,即便自己只不過(guò)是浩瀚星河中一粒塵埃,卻不顯得十足渺小。
學(xué)習(xí)數(shù)學(xué),最好能夠先了解它的歷史與背景,這樣才能明白自己在學(xué)著什么,對(duì)它產(chǎn)生興趣而不是當(dāng)成必須完成的任務(wù),所以我也極力推薦大家看這本書。
《數(shù)學(xué)史》讀后感5
首先,看到這本書后,第一個(gè)感覺(jué)是這本書太厚了,肯定無(wú)聊。而第二個(gè)印象是在每一個(gè)概念后的“見數(shù)學(xué)概念小史某某頁(yè)”,然后這最重要的事是這書講了這我不曾了解的事。
從過(guò)去到現(xiàn)在,先是古埃及人,他們的方法對(duì)于現(xiàn)代太不實(shí)用了,但是他們還是聰明,知道用符號(hào),用兩個(gè)符號(hào)來(lái)表示1()和10(),這東西就是冪,在生活中肯定很少用,而且我還發(fā)現(xiàn)這數(shù)學(xué)呢我一直認(rèn)為是想從簡(jiǎn)單到復(fù)雜,但是并不是如此,可以說(shuō)是相反的。
比巴倫的數(shù)學(xué)家們特別有趣,造的題目也有趣,不實(shí)用,但是很好玩,在本書的15頁(yè),有這原題,這大概就是用一根蘆葦去測(cè)量田有多大,其實(shí)就是二元一次方程,但是看完頭都大了,不知到底在講什么。
繼續(xù)讀著,誒!看見了老熟人——?dú)W幾里得,從小學(xué)周圍的人都在談?wù)撝,給我講他的曠世巨作《幾何原本》,過(guò)去經(jīng)常說(shuō)“好,好,好,《幾何原本》好。”但是我并不知道這書居然是公元前三千多年左右寫的,我一直認(rèn)為他是希臘人,但是他居然是埃及人,這好奇怪,據(jù)書中說(shuō)有很多的希臘數(shù)學(xué)家都不是希臘人。
繼續(xù)讀,數(shù)學(xué)也和天文學(xué)有關(guān),從天文學(xué)中又出現(xiàn)了三角學(xué),原來(lái)三角學(xué)是從天文學(xué)出來(lái)的,在讀阿拉伯?dāng)?shù)學(xué)時(shí),看見了“楊輝”三角形,但是這書中的是“帕斯卡三角形”,其實(shí)也是“楊輝”三角形,所以后者好記些。
微積分里面看見了伽利略,但是似乎不是他的'主場(chǎng),所以不管他,微積分這里知道了流數(shù)和微分基本上都是我們現(xiàn)在所稱的導(dǎo)數(shù)。他們的發(fā)明者分別是牛頓和萊布尼茨。牛頓這特別熟悉了,這萊布尼茨是個(gè)律師和數(shù)學(xué)家,他最可以的是他的公式幾乎都是在顛簸的馬車上寫下。在各個(gè)學(xué)科每每留下了著作。
還有一個(gè)人讓我記住了,叫做歐拉,不光名字好記,他自己也是一個(gè)喜歡記的人,據(jù)書上所說(shuō),他可以說(shuō)是一個(gè)論文天才也是數(shù)學(xué)天才,因?yàn)橹灰幸粋(gè)好的方法,自己馬上就寫一篇論文,來(lái)記下自己的觀念。
這便是這《這才是好讀的數(shù)學(xué)史》上篇的讀后感,不是特別無(wú)聊,反而還有一些有趣,整體的布局也不錯(cuò),讓讀者一步步深入,有特別強(qiáng)的吸引力,可能因人而異吧,下篇就是純數(shù)學(xué)了,所以這便是我的讀后感了。
《數(shù)學(xué)史》讀后感6
今年的寒假出奇的漫長(zhǎng),在這漫長(zhǎng)的寒假里,我讀了一本我不怎么喜歡的書——《數(shù)學(xué)史》,為什么不喜歡呢?是因?yàn)槲液芏嗖欢,但是讀著讀著我就喜歡上了,《數(shù)學(xué)史》記錄著人類數(shù)學(xué)歷史發(fā)展的進(jìn)程,讀了它,我有一點(diǎn)膚淺的體會(huì)。
體會(huì)一:數(shù)學(xué)源自于與生活的需要與發(fā)展。
書中寫到:人類在很久之前就已經(jīng)具有識(shí)辨多寡的能力,從這種原始的數(shù)學(xué)到抽象的“數(shù)”概念的形成,是一個(gè)緩慢漸進(jìn)的.過(guò)程。人們?yōu)榱朔奖阌谏畋阌辛怂阈g(shù),于是開始用手指頭去“計(jì)算”,手指頭計(jì)數(shù)不夠就開始用石頭,結(jié)繩,刻痕去計(jì)計(jì)數(shù)。例如:古埃及的象形數(shù)字;巴比倫的楔形數(shù)字;中國(guó)的甲骨文數(shù)字;希臘的阿提卡數(shù)字;中國(guó)籌算術(shù)碼等等。雖然每種數(shù)字的誕生都有不同的背景與用途,以及運(yùn)算法則,但都同樣在人類歷史發(fā)展和數(shù)學(xué)發(fā)展起著至關(guān)重要的作用,極大地推動(dòng)了人類文明的前進(jìn)。
體會(huì)二:河谷文明和早期數(shù)學(xué)在歷史的長(zhǎng)河一樣璀璨奪目。
歷史學(xué)家往往把興起于埃及,美索不達(dá)米亞,中國(guó)和印度等地域的古文明稱為“河谷文明”,早期的數(shù)學(xué),就是在尼羅河,底格里斯河與幼發(fā)拉底河,黃河與長(zhǎng)江,印度河與恒河等河谷地帶首先發(fā)展起來(lái)的。埃及人留下來(lái)的兩部草紙書——萊茵徳紙草書和莫斯科紙草書,還有經(jīng)歷幾千年不倒的神秘金字塔,給后人詮釋了古埃及人在代數(shù)幾何的偉大成就,也給后人留下了輝煌的文化歷史,而美索不達(dá)米亞在代數(shù)計(jì)算方面更是達(dá)到令人不可思議的程度。三次方程,畢達(dá)哥拉斯都是它創(chuàng)造的不朽的歷史,在數(shù)學(xué)史上的地位是至關(guān)重要的。
古人云:讀史使人明智。讀了《數(shù)學(xué)史》讓我明白:數(shù)學(xué)源于生活,高于生活,最終服務(wù)于生活,運(yùn)用于生活。
《數(shù)學(xué)史》讀后感7
數(shù)學(xué)是歷史的長(zhǎng)河中一顆閃亮的明珠,閃閃發(fā)光。生活中離不開數(shù)學(xué),處處都能看到數(shù)學(xué)的影子。這個(gè)寒假老師叫我們讀了一本叫做《這才是好讀的數(shù)學(xué)史》的書。更加深入的了解了不同國(guó)家的不同數(shù)學(xué)發(fā)展歷史。讓我從中對(duì)數(shù)學(xué)有了不同的理解。
我們?cè)趯W(xué)校也一直在學(xué)習(xí)數(shù)學(xué),卻從來(lái)沒(méi)有學(xué)過(guò)數(shù)學(xué)的發(fā)展歷程,通過(guò)閱讀這本書我也明白了,從古至今的數(shù)學(xué)發(fā)展是很漫長(zhǎng)的但卻十分有意義。就像現(xiàn)在我們所學(xué)的'數(shù)學(xué),其實(shí)背后都有著數(shù)學(xué)家們探索的故事。從中我們也能感受到數(shù)學(xué)家不斷追求真理的那種執(zhí)著。這本書不僅講了中國(guó)的數(shù)學(xué)發(fā)展,也還講了許多國(guó)家的數(shù)學(xué)發(fā)展。我們也看到了數(shù)學(xué)的遼闊,現(xiàn)在我們學(xué)的只是皮毛。
數(shù)學(xué)發(fā)展的歷史長(zhǎng)河中總有一些光輝一直不掉的數(shù)學(xué)家們,他們推進(jìn)了數(shù)學(xué)的發(fā)展,真正的印刻在了歷史的長(zhǎng)河里。但是在探索數(shù)學(xué)的道路上,在他們的背后還有許多一直默默探索的人,而能夠支持他們一直走下去的理由,我想只能是熱愛吧。因?yàn)闊釔郏韵胩剿鞲唷?/p>
對(duì)于數(shù)學(xué)的探索。并不是只屬于某一個(gè)國(guó)家,而是屬于全人類的。就像古希臘數(shù)學(xué)的中心是幾何,他們也探索出了許多關(guān)于幾何的真理。但這些真理最后也被全世界所使用,所以在探究數(shù)學(xué)這條路上全人類都是一致的。雖然在公元五世紀(jì)標(biāo)志著古希臘數(shù)學(xué)的終結(jié),但是,古希臘的數(shù)學(xué)也給了人們?cè)S多真理。
通過(guò)閱讀這本書,我不僅了解到了數(shù)學(xué)的發(fā)展歷史,也明白了數(shù)學(xué)的發(fā)展是無(wú)止境的,具有創(chuàng)新,是開啟科學(xué)大門的鑰匙,是人類智慧的結(jié)晶。
《數(shù)學(xué)史》讀后感8
數(shù)學(xué),一根串著文明歷史發(fā)展的閃耀金繩,它與文學(xué)物理學(xué)藝術(shù)經(jīng)濟(jì)學(xué)或音樂(lè)一樣,是人類不斷發(fā)展,努力的結(jié)果。
對(duì)數(shù)學(xué)不太敏感的我,拿起這本數(shù)學(xué)史,一開始是不愿意翻開的,認(rèn)為它語(yǔ)言生澀,一定有很多的生僻又陌生的專有名詞,幾乎滿篇皆是,所以從收到這本書之后2天內(nèi)都沒(méi)有看過(guò)。但是為了完成劉老師的作業(yè),我硬著頭皮翻開了這本陌生的書。這本書是以時(shí)間發(fā)展為主線進(jìn)行編布的。
讀 開端的時(shí)候我就覺(jué)得這本書很不一樣語(yǔ)言是親切、嚴(yán)謹(jǐn)?shù)挠^點(diǎn)是新穎的。作者“從歷史開始學(xué)數(shù)學(xué)”的觀點(diǎn)讓我對(duì)這本書產(chǎn)生了興趣。變得愿意與他一起跟隨數(shù)學(xué)的`腳步,一頁(yè)一頁(yè)翻下去,讀下去。在書本中,有許多我認(rèn)識(shí)的老朋友,他們?cè)?jīng)在小學(xué)或是初中課本上出現(xiàn)過(guò)。像歐幾里得、笛卡爾。他們是數(shù)學(xué)的奠基人,為數(shù)學(xué)之路鋪上卵石。在這本書中也出現(xiàn)過(guò)一些我不熟悉的偉大數(shù)學(xué)家,他們?cè)谡J(rèn)真探究,證明的場(chǎng)景一幕幕浮現(xiàn)在腦海,令人心生敬畏。
我記憶最深刻的就是一位打破了“數(shù)學(xué)家都是男性”觀念的法國(guó)優(yōu)秀女?dāng)?shù)學(xué)家———索菲.熱爾曼!
她在所謂的“啟蒙運(yùn)動(dòng)”中成長(zhǎng),懷揣著熾熱的想成為數(shù)學(xué)家的愿望,在困難重重克服了社會(huì)對(duì)女性知識(shí)分子的偏見,在彈性理論上取得重要結(jié)果。實(shí)在令人佩服!
當(dāng)今社會(huì),數(shù)學(xué)在多領(lǐng)域工作,在工地、廣場(chǎng)、車站、實(shí)驗(yàn)室......
我們需要數(shù)學(xué),今天需要數(shù)學(xué),未來(lái)也一樣需要數(shù)學(xué),因?yàn)椤皵?shù)學(xué)不是被發(fā)現(xiàn)出來(lái)的,而是被發(fā)明出來(lái)的!”
學(xué)好數(shù)學(xué)就是走好未來(lái)的一大步!
《數(shù)學(xué)史》讀后感9
在我閱讀數(shù)學(xué)史之前,數(shù)學(xué)在我的腦子里,就是一個(gè)很難很難的學(xué)科。數(shù)學(xué)漂浮在我的腦海里,像一只枯萎的蝴蝶,死板而又無(wú)味。
但是在閱讀數(shù)學(xué)史之后我知道了,數(shù)學(xué)的歷史源遠(yuǎn)流長(zhǎng)。我了解到,在早期的人類社會(huì)中,是數(shù)學(xué)與語(yǔ)言、藝術(shù)以及宗教一并構(gòu)成了最早的人類文明。數(shù)學(xué)是最抽象的科學(xué),而最抽象的數(shù)學(xué)卻能催生出人類文明的絢爛的花朵。這便使數(shù)學(xué)成為人類文化中最基礎(chǔ)的工具。而在現(xiàn)代社會(huì)中,數(shù)學(xué)正在對(duì)科學(xué)和社會(huì)的發(fā)展提供著不可或缺的理論和技術(shù)支持。
就像書中所寫的一樣,或許在數(shù)學(xué)課上講一些有趣的小故事,可以提高學(xué)生的專注力和興趣,然后引入課堂。
可能是由于我見識(shí)短淺(?)我一直認(rèn)為中國(guó)數(shù)學(xué)是非常高深,深不可測(cè)的那種,認(rèn)為中國(guó)數(shù)學(xué)在世界有最高的影響力和地位。但其實(shí)中數(shù)是非常具有影響力(九九乘法表,11的兩邊一拉中間相加)但希臘數(shù)學(xué)是獨(dú)一無(wú)二的,盡管在現(xiàn)在的'數(shù)學(xué)之中,希臘數(shù)學(xué)家的邏輯推理和證明都是擺在數(shù)學(xué)中心的。數(shù)學(xué)家或許有許多不同,但他們絕對(duì)擁有財(cái)力·時(shí)間和數(shù)學(xué)天賦。他們的嚴(yán)謹(jǐn)性和專業(yè)精神恐怕是我畢生難以追求的吧。
總的來(lái)說(shuō),數(shù)學(xué)是人類創(chuàng)造活動(dòng)的過(guò)程,而不單純是一種形式化的結(jié)果;運(yùn)用辨證唯物主義的觀點(diǎn)看待數(shù)學(xué)科學(xué)及數(shù)學(xué)教育,在他們的形成和發(fā)展過(guò)程中,不但表現(xiàn)出矛盾運(yùn)動(dòng)的特點(diǎn),而且它們與社會(huì)、政治、經(jīng)濟(jì)以及一般人類的文化有著密切的聯(lián)系,而這些聯(lián)系就像龍須酥一樣香濃醇厚,萬(wàn)般絲滑,密不可分,是不能夠輕易斬?cái)嗟年P(guān)系!
數(shù)學(xué)史不僅僅是單純的數(shù)學(xué)成就的編年記錄。數(shù)學(xué)的發(fā)展決不是一帆風(fēng)順的,在跟讀的情況下是充滿猶豫、徘徊,要經(jīng)歷艱難曲折,甚至?xí)媾R困難和戰(zhàn)盛危機(jī)的斗爭(zhēng)記錄。無(wú)理量的發(fā)現(xiàn)、微積分和非歐幾何的創(chuàng)立…這些例子可以幫助人們了解數(shù)學(xué)創(chuàng)造的真實(shí)過(guò)程,而這種真實(shí)的過(guò)程是在教科書里以定理到定理的形式被包裝起來(lái)的。對(duì)這種創(chuàng)造過(guò)程的了解則可以使人們探索與奮斗中汲取教益,獲得鼓舞和增強(qiáng)信心。
我相信在未來(lái),數(shù)學(xué)史帶給我的影響,會(huì)影響到我的一生,我也希望中國(guó)數(shù)學(xué)能夠源遠(yuǎn)流長(zhǎng),從《九章算術(shù)》到《周髀算經(jīng)》呈現(xiàn)出更多的”東方數(shù)學(xué)“的色彩!
《數(shù)學(xué)史》讀后感10
又這樣過(guò)了一個(gè)月了,盡管也就那么的幾節(jié)數(shù)學(xué)史的課,可是,依然讓我聽得津津入味。認(rèn)識(shí)數(shù)學(xué)歷史,重溫?cái)?shù)學(xué)的發(fā)展道路。
數(shù)學(xué),似乎是一個(gè)枯燥的學(xué)科,但是,卻是我們生活當(dāng)中,最為有用的工具之一,它是物理化學(xué)生物的搖籃,是政治經(jīng)濟(jì)學(xué)的基礎(chǔ),是市場(chǎng)里的公平秤,是我們量化自己的必要工具。數(shù)學(xué),就是這么的一個(gè)“工具箱”,前人用萬(wàn)分的努力汗水,把這個(gè)工具弄得更為人性化,更能讓我們好好地使用!稊(shù)學(xué)史概論》這本書,真的讓我對(duì)數(shù)學(xué)有了更深的認(rèn)識(shí)。
下面,我說(shuō)說(shuō)從《數(shù)學(xué)史概論》這本書,我又學(xué)到了什么。
古希臘第一位偉大的數(shù)學(xué)家泰勒斯,曾利用太陽(yáng)影子成功地計(jì)算出了金字塔的高度,實(shí)際上利用的就是相似三角形的性質(zhì)?窗,利用數(shù)學(xué)簡(jiǎn)單的思維,就能把本不可能完成的計(jì)算,就這樣輕松解決了。在泰勒斯之后,以畢達(dá)哥拉斯為首的一批學(xué)者,對(duì)數(shù)學(xué)做出了極為重要的貢獻(xiàn)。發(fā)現(xiàn)“勾股定理”,是他們最出色的成就之一,因此直到現(xiàn)在,西方人仍然把勾股定理稱為“畢達(dá)哥拉斯定理”。正是這個(gè)定理,導(dǎo)致了無(wú)理數(shù)的發(fā)現(xiàn)。勾股定理,我相信很多人都很熟悉,可是又有多少人知道其中的具體的得來(lái)過(guò)程呢,從這條定理的證明,到后來(lái)導(dǎo)致了無(wú)理數(shù)的發(fā)現(xiàn),我也相信未來(lái),也一定有不少的理論在這個(gè)基礎(chǔ)上,不斷地被發(fā)現(xiàn),被證明。在畢達(dá)哥拉斯之后,就是偉大的古希臘哲學(xué)家亞里士多德,他是人類科學(xué)發(fā)展史上最博學(xué)的人物之一,正是他所創(chuàng)立的邏輯學(xué),對(duì)古希臘數(shù)學(xué)的發(fā)展產(chǎn)生了深遠(yuǎn)的`影響。到了歐幾里德時(shí)代,幾何學(xué)已經(jīng)成為一門相當(dāng)完整的學(xué)科了。歐幾里德的名著《幾何原本》,是世界數(shù)學(xué)史上最偉大的著作之一。時(shí)至今日,我們?cè)诔踔须A段學(xué)習(xí)的平面幾何,大部分知識(shí)依然來(lái)源于古老的《幾何原本》。在此之前,我只知道,亞里士多德在哲學(xué)方面為世界做出了很大的貢獻(xiàn),可是也不可否認(rèn),在幾何方面他也對(duì)數(shù)學(xué)界做出的貢獻(xiàn)不可磨滅。
研究數(shù)學(xué)發(fā)展歷史的學(xué)科,是數(shù)學(xué)的一個(gè)分支,也是自然科學(xué)史研究下屬的一個(gè)重要分支。數(shù)學(xué)史研究的任務(wù)在于,弄清數(shù)學(xué)發(fā)展過(guò)程中的基本史實(shí),再現(xiàn)其本來(lái)面貌,同時(shí)透過(guò)這些歷史現(xiàn)象對(duì)數(shù)學(xué)成就、理論體系與發(fā)展模式作出科學(xué)、合理的解釋、說(shuō)明與評(píng)價(jià),進(jìn)而探究數(shù)學(xué)科學(xué)發(fā)展的規(guī)律與文化本質(zhì)。作為數(shù)學(xué)史研究的基該方法與手段,常有歷史考證、數(shù)理分析、比較研究等方法?梢哉f(shuō),在數(shù)學(xué)的漫長(zhǎng)進(jìn)化過(guò)程中,幾乎沒(méi)有發(fā)生過(guò)徹底推翻前人建筑的情況。正是我們不斷地為數(shù)學(xué)這座高樓添磚加瓦,它才能越立越高,越來(lái)越扎實(shí),我也為可以這樣學(xué)習(xí)和認(rèn)識(shí)數(shù)學(xué)而感到滿足!
《數(shù)學(xué)史》讀后感11
數(shù)學(xué)是神秘的,古老而明亮,在人類歷史長(zhǎng)河中,閃閃發(fā)光,我讀了數(shù)學(xué)史后,知道了數(shù)學(xué)的起源,發(fā)展與未來(lái)的走向,其中,《微積分與應(yīng)用數(shù)學(xué)》給我留下深刻印象
16世紀(jì)到17世紀(jì),可以說(shuō)是一個(gè)數(shù)學(xué)史路上一個(gè)里程碑,在16世紀(jì)早期,學(xué)者們創(chuàng)造了代數(shù),他們被稱為“未知數(shù)計(jì)算家”,在那個(gè)時(shí)期,代數(shù)占據(jù)了數(shù)學(xué)史的中心位置,而到了16世紀(jì)末17世紀(jì)初,人類開始了新的探索,代數(shù)與幾何共存,以此來(lái)研究天文,工程,航海,甚至是政治上的一些問(wèn)題:開勒普用希臘圓錐描述太陽(yáng)系,托馬斯·哈里奧特則發(fā)展代數(shù),笛卡爾把代數(shù)和幾何結(jié)合,從而開始理解彗星,光等現(xiàn)象,這一時(shí)期,可以說(shuō)是各種數(shù)學(xué)成就在此出生,但最出名的,還是微積分,當(dāng)時(shí)人們無(wú)法用數(shù)字表現(xiàn)出天體的運(yùn)動(dòng),無(wú)法表現(xiàn)一些抽象的物體,于是牛頓與萊布尼茨發(fā)明了微積分,但微積分始終還是較為抽象,不就后,當(dāng)時(shí)最著名的數(shù)學(xué)家——?dú)W拉也做出了一系列成就:三角形中的幾何學(xué),多面體的`基本定理,有趣的是,歐拉甚至將數(shù)應(yīng)用于船舶,中彩票或是過(guò)橋,歐拉將自己生活的方方面面都往數(shù)學(xué)上想,在他的世界中,數(shù)學(xué)無(wú)處不在。
我們不難看出這些數(shù)學(xué)家的發(fā)明的確大大改變了人們的生活,他們掌握了探索世界的鑰匙——數(shù)學(xué),將數(shù)學(xué)應(yīng)用到方方面面,我們現(xiàn)代生活不也是如此,處處是數(shù)學(xué),但最重要的是,我們熱愛數(shù)學(xué)。
《數(shù)學(xué)史》讀后感12
讀完《這才是好讀的數(shù)學(xué)史》之后,我最想表達(dá)的就是對(duì)數(shù)學(xué)悠長(zhǎng)的歷史的感嘆,這本書讓我了解到從3.7萬(wàn)年前到現(xiàn)在21世紀(jì)的數(shù)學(xué)的發(fā)展與進(jìn)步,也明白了數(shù)學(xué)在生活中的重要性。
下面我將介紹幾點(diǎn)我印象最深刻的內(nèi)容:
在書中第一章:開端中介紹了四大文明古國(guó)的數(shù)學(xué)文化,包括當(dāng)時(shí)的人們用什么材質(zhì)的.東西來(lái)記錄數(shù)學(xué),用數(shù)學(xué)干什么以及保存情況如何。在這一章講述古巴比倫的數(shù)學(xué)是寫了他們數(shù)學(xué)中幾個(gè)特征,包括以60的冪表示數(shù)字,所以接近4000年后的今天為什么仍然把一小時(shí)分成60分,把一分鐘分成60秒。在這一章中也講了我國(guó)古代的數(shù)學(xué)文化,在書中介紹了《算經(jīng)十書》《九章算術(shù)》等中國(guó)古代的數(shù)學(xué)經(jīng)典,由于種種原因?qū)е庐?dāng)時(shí)的數(shù)學(xué)文化的損失,但作者實(shí)事求是,沒(méi)有寫一些沒(méi)有歷史根據(jù)的東西,再一次讓我感受到這本書的嚴(yán)謹(jǐn)。
書中是按國(guó)家的順序進(jìn)行安排的,因?yàn)槿绻磿r(shí)間順序安排的話,很容易弄混淆,作者按照時(shí)間線上在某個(gè)時(shí)間點(diǎn)上最重要的事情的國(guó)家來(lái)安排,體現(xiàn)了本書“好讀”的特點(diǎn)。
在書中有一個(gè)細(xì)節(jié)讓我注意,每一章最后都會(huì)有一段來(lái)推薦一些關(guān)于本章內(nèi)容更詳細(xì)的講解的書目,甚至詳細(xì)到了具體在哪一章,在書的最后把對(duì)應(yīng)的書名寫了出來(lái)(雖然是英語(yǔ)的,我看不懂)從中可以看到作者對(duì)待數(shù)學(xué)的嚴(yán)謹(jǐn)和細(xì)致。
我非常喜歡在書中的一句話“學(xué)習(xí)數(shù)學(xué)就像認(rèn)識(shí)一個(gè)人一樣,你對(duì)他(她)的過(guò)去了解的越多,你現(xiàn)在和將來(lái)就能越理解他(她),并與其互動(dòng)!边@句話感覺(jué)就像說(shuō)中了我的感受,我認(rèn)為閱讀完之后,自己不僅會(huì)對(duì)數(shù)學(xué)更有興趣,而且在以后學(xué)習(xí)數(shù)學(xué)的時(shí)候更加認(rèn)真對(duì)待。
《數(shù)學(xué)史》讀后感13
著名數(shù)學(xué)家陳省身曾說(shuō)過(guò):“了解歷史的變化是了解這門科學(xué)的一個(gè)步驟!崩钗牧窒壬摹稊(shù)學(xué)史概論》即為我們了解數(shù)學(xué)提供了重要途徑,本書系統(tǒng)全面,且一反尋常論述類著作的晦澀,理性與趣味并舉,嚴(yán)謹(jǐn)與生動(dòng)兼?zhèn)洌M顯數(shù)學(xué)的神圣與魅力。成書的初衷是為一些高等院校的數(shù)學(xué)史課程提供一個(gè)參考范本,但事實(shí)上,本書除了為數(shù)學(xué)專業(yè)師生提供參考外,也在不同程度上滿足了對(duì)數(shù)學(xué)史感興趣的各類讀者的需求,自20xx年8月出版第1版以來(lái),深受廣大讀者的推崇。
初讀此書時(shí),我還是一名大三的學(xué)生,一次偶然的翻閱,為我打開了新世界的大門,那些陌生的、新奇的領(lǐng)域逐漸豁然開朗。原來(lái)數(shù)學(xué)的演化經(jīng)歷了一個(gè)漫長(zhǎng)而又曲折的`過(guò)程,從遠(yuǎn)古到現(xiàn)代,它不斷發(fā)展完善著;原來(lái)每一個(gè)看似簡(jiǎn)單的定理都承載著一個(gè)不為人知的故事,它簡(jiǎn)單卻厚重;原來(lái)數(shù)學(xué)是一門理性卻并不冰冷的學(xué)科,它來(lái)源于生活而又高于生活,鮮活且生動(dòng)。正如李文林先生在書中所言“數(shù)學(xué)的發(fā)展與人類的生產(chǎn)實(shí)踐和社會(huì)需求密切相關(guān)。對(duì)自然的探索是數(shù)學(xué)研究最豐富的源泉。但是數(shù)學(xué)的發(fā)展對(duì)于現(xiàn)實(shí)世界又表現(xiàn)出相對(duì)的獨(dú)立性。一門數(shù)學(xué)分支或一種數(shù)學(xué)理論已經(jīng)建立。人們便可在不受外部影響的情況下,僅靠邏輯思維而將它向前推進(jìn)。并由此導(dǎo)致新理論與新思想的產(chǎn)生!彼且婚T科學(xué),也是一種語(yǔ)言,有自己的文字符號(hào),有自己的內(nèi)在邏輯體系。它從無(wú)到有,從零散到系統(tǒng),從微小到龐大,它所經(jīng)歷的每一次危機(jī),又由此所取得的每一個(gè)重大突破,讓我為之震撼與景仰。
如今我已是一名入職兩年的數(shù)學(xué)教師,再看《數(shù)學(xué)史概論》,又能從中汲取許多教學(xué)靈感。學(xué)生對(duì)數(shù)學(xué)沒(méi)興趣,認(rèn)為數(shù)學(xué)枯燥,學(xué)無(wú)所用,一方面是因?yàn)槎嗄瓯粩?shù)學(xué)作業(yè)支配的恐懼,另一方面也來(lái)自于他們對(duì)數(shù)學(xué)的不了解。倘若在一個(gè)孩子還小的時(shí)候,就依據(jù)他的認(rèn)知水平,給他講一些數(shù)學(xué)家的和數(shù)學(xué)發(fā)展中的逸聞趣事,例如,泰勒斯測(cè)量金字塔、阿基米德給國(guó)王測(cè)量王冠體積、祖沖之父子與圓周率、數(shù)學(xué)王子高斯與其卓越的數(shù)學(xué)天賦、費(fèi)馬與費(fèi)馬大定理、理發(fā)師悖論與芝諾悖論等等,那么,在日后的數(shù)學(xué)學(xué)習(xí)中,他也許不會(huì)對(duì)數(shù)學(xué)產(chǎn)生抵觸情緒。在學(xué)習(xí)到相關(guān)內(nèi)容時(shí),看到一個(gè)個(gè)熟悉的人名,便會(huì)自然而然地產(chǎn)生親切感和興趣,學(xué)習(xí)起來(lái)事半功倍。
而作為高中數(shù)學(xué)教師,我們也可以將數(shù)學(xué)史融入平時(shí)的數(shù)學(xué)教學(xué)中,讓學(xué)生在數(shù)學(xué)學(xué)習(xí)過(guò)程中,不僅接觸到冷冰冰的知識(shí),還接觸到知識(shí)背后所蘊(yùn)藏的數(shù)學(xué)家的情感和意志,體味其中的數(shù)學(xué)思想,感受到數(shù)學(xué)的文化魅力。比如在必修一“函數(shù)與方程”的教學(xué)中,可以給學(xué)生講,從塔塔利亞到阿貝爾和伽羅瓦的方程發(fā)展史,讓學(xué)生明白利用“函數(shù)與方程的關(guān)系”求解方程近似解的意義。在必修二解析幾何的教學(xué)中,可以根據(jù)笛卡爾的“通用數(shù)學(xué)”思路,引導(dǎo)學(xué)生發(fā)現(xiàn):解決幾何問(wèn)題的一大途徑,是將它轉(zhuǎn)化為代數(shù)問(wèn)題。
數(shù)學(xué)是一門歷史性或者說(shuō)是累積性很強(qiáng)的學(xué)科,我們學(xué)習(xí)數(shù)學(xué)的過(guò)程應(yīng)與人類認(rèn)識(shí)數(shù)學(xué)的順序一致,這樣更符合我們的數(shù)學(xué)認(rèn)知規(guī)律。學(xué)習(xí)數(shù)學(xué)的道路上遇到的每一個(gè)問(wèn)題,或許都有數(shù)學(xué)家為它絞盡腦汁過(guò)。讀數(shù)學(xué)史,可以幫助我們了解數(shù)學(xué)演化的真實(shí)過(guò)程,體味數(shù)學(xué)思想的誕生與發(fā)展,可以使我們從前人的探索和奮斗中汲取教訓(xùn)和經(jīng)驗(yàn),獲得鼓舞和增強(qiáng)信心。那些悠悠長(zhǎng)河中的數(shù)學(xué)人所做的每一份努力,都是為了讓我們可以站在他們的肩膀上,更清楚地認(rèn)識(shí)這個(gè)世界。
數(shù)學(xué)是各個(gè)時(shí)代人類文明的標(biāo)志之一,是推進(jìn)人類文明的重要力量,數(shù)學(xué)史不僅是我們這些數(shù)學(xué)相關(guān)人士需要了解的,任何一個(gè)關(guān)心人類文明發(fā)展的人都值得了解。
《數(shù)學(xué)史》讀后感14
《數(shù)學(xué)史與數(shù)學(xué)教育》這本書全面展示數(shù)學(xué)發(fā)展的概況,以及彌補(bǔ)學(xué)校教育中內(nèi)容偏少、嚴(yán)重與現(xiàn)代數(shù)學(xué)發(fā)展脫節(jié)的缺陷,克服受教育者“只見樹木不見林”的局限性;強(qiáng)調(diào)數(shù)學(xué)是人類創(chuàng)造活動(dòng)的過(guò)程,而不單純是一種形式化的結(jié)果;運(yùn)用辨證唯物主義的觀點(diǎn)看待數(shù)學(xué)科學(xué)及數(shù)學(xué)教育,在他們的形成和發(fā)展過(guò)程中,不但表現(xiàn)出矛盾運(yùn)動(dòng)的特點(diǎn),而且它們與社會(huì)、政治、經(jīng)濟(jì)以及一般人類的文化有著密切的聯(lián)系。
數(shù)學(xué)的歷史源遠(yuǎn)流長(zhǎng)。在早期的人類社會(huì)中,數(shù)學(xué)與語(yǔ)言、藝術(shù)以及宗教一并構(gòu)成了最早的人類文明。對(duì)于數(shù)學(xué)是什么的問(wèn)題,不同的社會(huì)群體都有不同的理解。在當(dāng)代數(shù)學(xué)家的共同體中,一般將數(shù)學(xué)看作是“模式”的科學(xué),用以“揭示人們從自然界和數(shù)學(xué)本身抽象世界中所觀察到的結(jié)構(gòu)和對(duì)稱性!睌(shù)學(xué)科學(xué)以抽象的理論為核心,這個(gè)核心一方面依靠自身的內(nèi)能、運(yùn)用邏輯的鏈條發(fā)展新的理論,另一方面又不斷從現(xiàn)實(shí)世界的問(wèn)題中發(fā)現(xiàn)問(wèn)題、吸取營(yíng)養(yǎng)并創(chuàng)造出解決現(xiàn)實(shí)問(wèn)題的思想方法,形成了以純粹數(shù)學(xué)為核心、由眾多同心核層結(jié)構(gòu)組成的龐大的理論與應(yīng)用體系。按照美國(guó)《數(shù)學(xué)評(píng)論》的統(tǒng)計(jì),數(shù)學(xué)科學(xué)包括了約六十二個(gè)二級(jí)學(xué)科和四百多個(gè)三級(jí)學(xué)科。數(shù)學(xué)是最抽象的科學(xué),而最抽象的數(shù)學(xué)卻能催生出人類文明的絢爛的花朵。這使數(shù)學(xué)成為人類文化中最基礎(chǔ)的學(xué)科,對(duì)此恩格斯指出:數(shù)學(xué)在一門科學(xué)中的應(yīng)用程度,標(biāo)志著這門科學(xué)的成熟程度。在現(xiàn)代社會(huì)中,數(shù)學(xué)正在對(duì)科學(xué)和社會(huì)的發(fā)展提供著不可或缺的理論和技術(shù)支持。雖然數(shù)學(xué)在現(xiàn)代社會(huì)中的應(yīng)用是廣泛的,但卻不易為大眾所察覺(jué)。當(dāng)人們驚嘆原子彈的巨大威力時(shí),卻很難知道和真正理解它所依賴的“質(zhì)能公式”;當(dāng)人們接受CT掃描儀的檢查和診斷時(shí),很少有人理解它的設(shè)計(jì)原理:拉東變換;當(dāng)人們盡情享受動(dòng)畫片的娛樂(lè)時(shí)。很少聯(lián)想制作這些動(dòng)畫背后的數(shù)學(xué)方法。數(shù)學(xué)是無(wú)聲的音樂(lè),無(wú)色的圖畫。數(shù)學(xué)家默默地奉獻(xiàn)著自己的聰明和才智,他們?cè)谶壿嫷逆湕l上構(gòu)筑著人間的奇跡。一個(gè)民族數(shù)學(xué)修養(yǎng)的高低,對(duì)這個(gè)民族的文明有很大的影響。然而,在現(xiàn)代所謂的“熱門學(xué)科”中,人們常常難以提到數(shù)學(xué)學(xué)科。當(dāng)代數(shù)學(xué)家哈爾莫斯對(duì)此深表感觸道:甚至受過(guò)高等教育的人們,都不知道我的學(xué)科存在,這使我感到傷心!
與其他學(xué)科相比,數(shù)學(xué)科學(xué)經(jīng)歷了更長(zhǎng)的歷史進(jìn)程。在科學(xué)的其他分支中,物理學(xué)形成較早,但它也僅有幾百年的歷史,而數(shù)學(xué)的歷史已經(jīng)走過(guò)了兩千多年。數(shù)學(xué)史是研究數(shù)學(xué)發(fā)展規(guī)律的科學(xué)。它研究數(shù)學(xué)概念、數(shù)學(xué)方法和數(shù)學(xué)思想的起源和發(fā)展,同時(shí)也研究與之相關(guān)的社會(huì)政治、經(jīng)濟(jì)和一般文化的聯(lián)系。數(shù)學(xué)學(xué)科的累積性以及高度抽象而且模式化的特點(diǎn),使得它在學(xué)校的教育中面臨著十分尷尬的局面。數(shù)學(xué)作為現(xiàn)代化社會(huì)中不可或缺的基礎(chǔ)學(xué)科,本應(yīng)在學(xué)校課程中擁有更多的現(xiàn)代數(shù)學(xué)內(nèi)容。但實(shí)際情況是,到了高中階段的數(shù)學(xué)課程仍只有少量的現(xiàn)代數(shù)學(xué)知識(shí),更多的.是17世界中葉之前的初等數(shù)學(xué),而大學(xué)一年級(jí)的微積分,也只有18世界的數(shù)學(xué)成果,大量的近代與現(xiàn)代數(shù)學(xué)難以進(jìn)入大眾化的教育課程。我國(guó)在20世紀(jì)60年代制定”了加強(qiáng)雙基,培養(yǎng)三大能力”的數(shù)學(xué)教育目標(biāo),力圖在學(xué)校教育中使學(xué)生掌握數(shù)學(xué)基礎(chǔ)知識(shí)和基本能力,發(fā)展學(xué)生的數(shù)學(xué)計(jì)算、邏輯推理和空間想象能力。這一目標(biāo)充分體現(xiàn)了學(xué)科自身的特點(diǎn),卻仍然使不少的受教育者畏懼不前,甚至產(chǎn)生對(duì)數(shù)學(xué)學(xué)習(xí)的厭倦情緒。兩千多年前產(chǎn)生的歐幾里得幾何學(xué)是數(shù)學(xué)思想、方法的重要組成部分,也是自古以來(lái)學(xué)習(xí)數(shù)學(xué)的必修課程。但在現(xiàn)代的學(xué)校教育中,歐幾里得學(xué)變得食之無(wú)味而棄之不舍。在過(guò)去的半個(gè)世紀(jì)中,國(guó)際數(shù)學(xué)教育的改革浪潮跌宕起伏,歷盡艱險(xiǎn)。我國(guó)國(guó)家教育部分分別于20xx年和20xx年辦法了九年義務(wù)教育和高中數(shù)學(xué)教育的課程標(biāo)準(zhǔn),突出了“以人為本”、全面實(shí)施素質(zhì)教育的改革目標(biāo)。大眾教育、學(xué)生為主體、增強(qiáng)應(yīng)用意識(shí)、淡化形式、注重實(shí)質(zhì)等一系列數(shù)學(xué)教育的思想與理念在全球性的數(shù)學(xué)教育改革中應(yīng)運(yùn)而生。
《數(shù)學(xué)史》讀后感15
當(dāng)我們學(xué)習(xí)過(guò)數(shù)學(xué)史后,自然會(huì)有這樣的感覺(jué):數(shù)學(xué)的發(fā)展并不合邏輯,或者說(shuō),數(shù)學(xué) 發(fā)展的實(shí)際情況與我們今日所學(xué)的數(shù)學(xué)教科書很不一致。 我們今日中學(xué)所學(xué)的數(shù)學(xué)內(nèi)容基本 上屬于 17 世紀(jì)微積分學(xué)以前的初等數(shù)學(xué)知識(shí),而大學(xué)數(shù)學(xué)系學(xué)習(xí)的大部分內(nèi)容則是 17、18 世紀(jì)的高等數(shù)學(xué)。 這些數(shù)學(xué)教材業(yè)已經(jīng)過(guò)千錘百煉, 是在科學(xué)性與教育要求相結(jié)合的原則指 導(dǎo)下經(jīng)過(guò)反復(fù)編寫的, 是將歷史上的數(shù)學(xué)材料按照一定的邏輯結(jié)構(gòu)和學(xué)習(xí)要求加以取舍編纂 的知識(shí)體系,這樣就必然舍棄了許多數(shù)學(xué)概念和方法形成的實(shí)際背景、知識(shí)背景、演化歷程 以及導(dǎo)致其演化的各種因素,因此僅憑數(shù)學(xué)教材的學(xué)習(xí),難以獲得數(shù)學(xué)的原貌和全景,同時(shí) 忽視了那些被歷史淘汰掉的但對(duì)現(xiàn)實(shí)科學(xué)或許有用的數(shù)學(xué)材料與方法, 而彌補(bǔ)這方面不足的 最好途徑就是通過(guò)數(shù)學(xué)史的學(xué)習(xí)。在一般人看來(lái), 數(shù)學(xué)是一門枯燥無(wú)味的學(xué)科, 因而很多人視其為畏途, 從某種程度上說(shuō), 這是由于我們的數(shù)學(xué)教科書教授的往往是一些僵化的、 一成不變的數(shù)學(xué)內(nèi)容, 如果在數(shù)學(xué)教 學(xué)中滲透數(shù)學(xué)史內(nèi)容而讓數(shù)學(xué)活起來(lái), 這樣便可以激發(fā)學(xué)生的學(xué)習(xí)興趣, 也有助于學(xué)生對(duì)數(shù) 學(xué)概念、方法和原理的理解與認(rèn)識(shí)的深化。 科學(xué)史是一門文理交叉學(xué)科, 從今天的教育現(xiàn)狀來(lái)看, 文科與理科的鴻溝導(dǎo)致我們的教 育所培養(yǎng)的人才已經(jīng)越來(lái)越不能適應(yīng)當(dāng)今自然科學(xué)與社會(huì)科學(xué)高度滲透的現(xiàn)代化社會(huì), 正是 由于科學(xué)史的學(xué)科交叉性才可顯示其在溝通文理科方面的'作用。 通過(guò)數(shù)學(xué)史學(xué)習(xí), 可以使數(shù) 學(xué)系的學(xué)生在接受數(shù)學(xué)專業(yè)訓(xùn)練的同
時(shí), 獲得人文科學(xué)方面的修養(yǎng), 文科或其它專業(yè)的學(xué)生 通過(guò)數(shù)學(xué)史的學(xué)習(xí)可以了解數(shù)學(xué)概貌, 獲得數(shù)理方面的修養(yǎng)。 而歷史上數(shù)學(xué)家的業(yè)績(jī)與品德 也會(huì)在青少年的人格培養(yǎng)上發(fā)揮十分重要的作用。 中國(guó)數(shù)學(xué)有著悠久的歷史,14 世紀(jì)以前一直是世界上數(shù)學(xué)最為發(fā)達(dá)的國(guó)家,出現(xiàn)過(guò)許 多杰出數(shù)學(xué)家,取得了很多輝煌成就,其源遠(yuǎn)流長(zhǎng)的以計(jì)算為中心、具有程序性和機(jī)械性的 算法化數(shù)學(xué)模式與古希臘的以幾何定理的演繹推理為特征的公理化數(shù)學(xué)模式相輝映, 交替影 響世界數(shù)學(xué)的發(fā)展。由于各種復(fù)雜的原因,16 世紀(jì)以后中國(guó)變?yōu)閿?shù)學(xué)入超國(guó),經(jīng)歷了漫長(zhǎng) 而艱難的發(fā)展歷程才漸漸匯入現(xiàn)代數(shù)學(xué)的潮流。 由于教育上的失誤, 致使接受現(xiàn)代數(shù)學(xué)文明 熏陶的我們,往往數(shù)典忘祖,對(duì)祖國(guó)的傳統(tǒng)科學(xué)一無(wú)所知。數(shù)學(xué)史可以使學(xué)生了解中國(guó)古代 數(shù)學(xué)的輝煌成就, 了解中國(guó)近代數(shù)學(xué)落后的原因, 中國(guó)現(xiàn)代數(shù)學(xué)研究的現(xiàn)狀以及與發(fā)達(dá)國(guó)家 數(shù)學(xué)的差距,以激發(fā)學(xué)生的愛國(guó)熱情,振興民族科學(xué)。
《數(shù)學(xué)家徐利治的故事》,知道了徐老先生在數(shù)學(xué)上為祖國(guó)做出了貢獻(xiàn),他寫的許多論 文在國(guó)際上引起了反響,他還培養(yǎng)出一批成材的學(xué)生。 徐老先生為什么能成為數(shù)學(xué)家?為什么能做出這樣大的貢獻(xiàn)?原因之一, 就是他小時(shí)候不怕 困難,刻苦學(xué)習(xí)。文章里寫道:“他在讀書時(shí)常把伯父給他的午飯錢省下來(lái),用來(lái)買書和買 練習(xí)本,為了節(jié)省用紙,他常用手指在睡覺(jué)的涼席上練字,夜深人靜,同學(xué)們?cè)缫堰M(jìn)入甜蜜 的夢(mèng)鄉(xiāng),徐利治卻來(lái)到走廊,在燈光下認(rèn)真地學(xué)習(xí)。白天,他泡在圖書館里用饅頭、白開水 充饑……”可以看出,徐老先生小時(shí)候?qū)W習(xí)條件很不好,連買書、買練習(xí)本的錢都缺乏,只 好節(jié)省午飯錢,然而,他勤奮學(xué)習(xí),并不因?qū)W習(xí)條件差而氣餒。 在我們這時(shí)代,家庭生活比較富裕,很多家只有一個(gè)孩子,零花錢比較多,這些錢我們不是 去打電子游戲,就是去買好吃的。平時(shí),也很浪費(fèi),一張紙不是寫幾個(gè)字就扔了,就是折紙 飛機(jī)玩,一點(diǎn)也不知道節(jié)省。 在學(xué)習(xí)上,現(xiàn)在很多同學(xué)都不認(rèn)真學(xué)習(xí),學(xué)習(xí)目的不明確,我也是這樣,做題稍微遇到 一點(diǎn)困難就氣餒了。 我們的學(xué)習(xí)態(tài)度和徐老先生那種廢寢忘食的學(xué)習(xí)精神相比, 真有十萬(wàn)八 千里的差距。
【《數(shù)學(xué)史》讀后感】相關(guān)文章:
《簡(jiǎn)愛》讀后感 讀后感03-04
《燈光》讀后感作文_讀后感01-10
關(guān)于邊城的讀后感 讀后感03-05
奧德賽讀后感最新 讀后感03-05
魯迅故鄉(xiāng)的讀后感 讀后感03-05
《青銅葵花》讀后感_讀后感02-15
《家》讀后感_初中讀后感03-23
傅雷家書讀后感傅雷家書讀后感的讀后感11-23